
JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 9, No. 9, September 2007, p. 2910 - 2916 
 

Introducing logistic enzyme kinetics 
 

M. V. PUTZ*, A. M. LACRĂMĂa, V. OSTAFEa  
Laboratory of Computational and Structural Physical Chemistry, Chemistry Department, West University of Timişoara, 
Pestalozzi Street No.16, Timişoara, RO-300115, Romania 
aLaboratory of Biochemistry, Chemistry Department, West University of Timişoara, Pestalozzi Street No.16, Timişoara, 
RO-300115, Romania 
 
 
For treatment of in vitro enzyme kinetics the Michaelis-Menten equation is generalized to a logistic form. From the new 
probabilistic viewpoint the classical Michaelis-Menten kinetic resembles the first order expansion of the logistic one with 
respect to the bound substrate concentration. The probabilistic approach has three advantages. First, it better describes the 
quasi steady state approximation of catalysis. Second, it substitutes a logistic analytical solution for the closed-form W-
Lambert solution for the progress curves of the substrate decay or product formation, this way recovering the previously 
introduced ansatz by M. V. Putz, A.-M. Lacrămă and V. Ostafe Int. J. Mol. Sci. 7, 439 (2006). Finally, it provides an 
alternative time-dependent fitting curve for estimating kinetic parameters that replaces the earlier linear plot representation 
with a first order of time expansion.     
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1. Introduction 
 

It has long been recognized that the chemical 
reactions that support life are mediated by enzymes and 
their kinetics.  Brown [1, 2] and Henri [3, 4] first proposed 
that enzyme catalysis is based on the reversible reaction 
between and enzyme E and a substrate S with rate constant 
k1 to form an intermediate enzyme-substrate complex ES. 
The complex then reacts irreversibly with rate constant k2, 
regenerating the enzyme E and producing product P: 
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The mathematical formulation of this process was 
developed by Michaelis-Menten [5] and is represented by 
the classical Michaelis-Menten equation (2) 
where ][ 02max EkV = , and ( ) 121 / kkkK M += − .   
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Solution of the Michaelis-Menten equation to estimate 

the kinetic constants has traditionally involved linear 
transformation [6, 7] or the use of graphical methods [8-
10] both of which are subject to error.  For example, when 
the double reciprocal linear plot of equation (2) is used, 
small errors in ][ 0S  or 0v  lead to large errors in ]/[1 0S  

or 0/1 v  and thus to large errors in MK  and maxV  [11, 
12].  On the other hand, direct application of equation (2) 
requires an estimate of the initial velocity for every point 
to be fitted to the progress curve [13, 14].   

Integration of equation (2) provides an instantaneous 
version of the Michaelis-Menten equation [15, 16] as 
equation (3), which also has equivalent linear forms for a 
number of different cases [17]. 
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Working formulas developed for particular cases such 
as enzyme inhibition, by Duggleby and Morrison [18], 
multiple substrates, by Duggleby and Wood [19], the 
presence of an inhibitor at concentrations comparable to 
the enzyme concentration, by Szedlacsek et al. [20], and 
gradual inactivation of an enzyme, by Duggleby [21], 
ignore the fact that the largest experimental error is in the 
concentration and not in the velocity.  Because of this, the 
linear transformations and approximations distort the 
experimental errors, leading to possible bias in the 
estimates of MK  and maxV [14]. Schnell and Mendoza 
[13] derived the closed form solution (4) of the 
instantaneous Michaelis-Menten equation in terms of the 
W-Lambert function [22].  
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Relationship (4) is valid at all times and makes it 
possible to treat many complex enzymatic interactions 
mathematically, extensively studied by Schnell and 
Mendoza [14, 22, 23]. This model is, however, limited 
because the W- function is not widely available in curve-
fitting software.  

More generally, it has been shown that the 
computational methods used to numerically integrate the 
instantaneous Michaelis-Menten equation are time-
consuming and relatively slow [24-26]. 

In the present work we propose a generalized version 
of the classical Michaelis-Menten equation that avoids 
most of the difficulties encountered in modeling enzymatic 
kinetics in vitro. 
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2. Theoretical model 
 

In the post genomic era the development of kinetic 
models that allow simulation of complicated metabolic 
pathways and protein interactions is becoming 
increasingly important [27,28]. Unfortunately, the 
difference between an in vivo biological system and 
homogeneous in vitro conditions is large, as shown by 
Schnell and Turner [29]. Mathematical treatments of 
biochemical kinetics have been developed from the law of 
mass action in vitro but the modifications required to bring 
them in line with the stochastic in vivo situation are still 
under development [30-32]. 

We use a probabilistic approach, based on the law of 
mass action, to characterize in vitro enzymatic reactions of 
type (1):  

)]([)]([1 UNREACTREACT bindbind SS PP += .      (5) 

In equation (5), )]([REACT bindSP  is the probability 
that the reactions (1) proceed at a certain concentration of 
substrate binding to the enzyme bindS][ . The limits are:  
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0)]([REACT =bindSP  when the enzymatic reaction 
does not proceed or when it stops because the substrate 
fails to bind or is entirely consumed. Conversely, 

1)]([REACT =bindSP  when the enzymatic reaction 
proceeds, and it is related to the standard quasi-steady-
states approximation (QSSA). The probability of the 
occurrence of products in reactions (1) lies between these 
limits. Similarly, in the case where enzymatic catalysis 
does not take place, )]([UNREACT bindSP , the limits are:    
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This probabilistic treatment of enzymatic kinetics is 
based on the chemical bonding behavior of enzymes that 
act upon substrate molecules through diverse mechanisms 
and it may offer the key to the quantitative treatment of 
different types of enzyme catalysis [33]. 

To expand the terms of equation (5) to analyze 
reactions in the (1) we first recognize that the binding 
substrate concentration can be treated as the instantaneous 
substrate concentration: )]([][ tSS bind = . 

Maintaining the quasi-steady-state conditions for in 
vitro systems, we may assume constant association-
dissociation rates so that probability of reaction is written 
as the rate of consumption of the substrate,  

)]([)( tS
dt
dtv −=       ,                   (8) 

to saturation:    
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after the initial transient of the enzyme-substrate reaction 
in (1). 

We know only that expression (9) behaves like a 
probability function, with values in the realm [0, 1]. Given 
expressions (2), (5) and (9) we derive an expression for the 
unreacted probability term, ))](([UNREACT tSP .  
 The expression: 
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satisfies all of the probability requirements, including the 
limits in (7), and, when combined with equations (9) and 
(5), gives the instantaneous version of the classical 
Michaelis-Menten equation (2). Remarkably, expression 
(10) can be seeing as generalization of the efficiency of the 
Michaelis-Menten reaction under steady-state conditions 
[34]. Originally, the efficiency depends on two 
parameters: MK  that embodies the thermodynamic 
conditions of the enzymic reaction and the initial substrate 
concentration ][ 0S ; it determines the ratio of the free to 
total enzyme concentration in the reactions (1); that is, 
when the efficiency is equal to one, we cannot expect to 
find substrate free in the reaction, i.e. the reactions in (1) 
are all consumed so that first branch of the limits (7) is 
fulfilled as no further binding will occur.   
 

 
 

Fig. 1. Initial Michaelis-Menten and logistic velocities 
plotted against initial substrate concentration for the 
reaction (1). The dashed curve corresponds to the 
Michaelis-Menten equation (2) while the continuous 
thick    curve    represents    its    logistic   generalization:  
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It is clear that the Michaelis-Menten term (10) is just a 

particular choice for a probabilistic enzymatic kinetic 
model of the conservation law (5). A more generalized 
version of equation (10) that preserves all of the above 
probabilistic features is  
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from which the Michaelis-Menten term (10) is returned by 
performing the )]([ tS  first order expansion for the case 
where the bound substrate approaches zero:  
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Worth noting that there is no monotonically form 

between 0 and 1 other that that of equation (11) to 
reproduce basic Michaelis-Menten term (10) when 
approximated for small x = [S](t)/KM . For instance, if one 
decides to use exp(-x2) then the unreactive probability will 
give 1/(1+x2) as the approximation for small x, definitely 
different of what expected in basic Michaelis-Menten 
treatment (10). This way, the physico-chemical meaning 
of equation (12) is that the Michaelis-Menten term (10) 
and its associated kinetics apply to fast enzymatic 
reactions, i.e. for fast consumption of [S](t), which also 
explains the earlier relative success in applying 
linearization and graphical analysis to the initial velocity 
equation (2).  

Use of equation (11) instead of (10) expands the range 
of reaction rates and provides a new kinetic equation, in 
the form of a logistic expression 
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based on probability and derived from equations and (5), 
(9), and (11). 

At initial conditions, logistic equation (13) gives an 
initial velocity of reaction ( *

0v ) that is uniformly higher 
than that calculated by Michaelis-Menten (2) at all initial 
concentrations of the substrate, except for the case where 

0][ 0 →S , when both are zero, see Fig. 1. 
Reliability tests of the logistic form of Michaelis-

Menten kinetics (13) are reported below.    
 
  
3. Reliability of the logistic enzyme kinetic 

 
Quasi Steady-State Approximation Analysis  

 
One of the fundamental assumptions made in deriving 

basic Michaelis-Menten kinetics, except in the initial so-
called transient phase of the reaction, is the quasi steady 
state approximation of the [ES] concentration, i.e. the rate 
of synthesis of the ES complex must equal its rate of 
consumption until the substrate is nearly exhausted.  It has 
been demonstrated that the QSSA is equivalent with the 
physiologically common condition that the substrate is in 
great excess over the enzyme, as firstly shown by Laidler 
[35]: 

][][ 00 ES >> .                         (14) 
 

Let us investigate whether condition (14) may arise 
within the proposed probabilistic enzymatic kinetics and 

what consequences that has for applicability of the logistic 
treatment.  

For reaction (1) to proceed with a high probability it is 
necessary that 

 
0)]([1)]([ UNREACTREACT →⇔→ bindbind SS PP                     

(15) 
 

or, the probability of the enzymatic reaction proceeding 
increases to one as the probability that the substrate will 
not bind with the enzyme approaches zero.  Analytically, 
we use the limiting case (16) where reaction (1) proceeds. 
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Then, by combining equation (16) with the general in 
vitro form (9), we derive the time dependent equation (17). 
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Substituting ][ 02max EkV =  and integrating 

produces the linear portion of the substrate depletion 
curve:  

tEkStS ][][)]([ 020 −=  .             (18) 

The substrate condition 0)]([ >>tS  corresponds to 
the binding case for which equation (16) is valid under the 
conditions given in expression (6). Applying this substrate 
condition to equation (18) during the rate limiting step 
when  

2

1
k

t ≅                                (19) 

ensures that almost all of the substrate is being 
transformed into product via reactions (1), resulting in the 
QSSA condition (14).  

We have proved that the left side of the probabilistic 
equivalence (15) is valid for QSSA and we must do the 
same for the right side.  The more closely 

))](([UNREACT tSP  approaches zero as ))](([REACT tSP  
approaches one, the better QSSA is obtained. 

Recalling the two forms presented for the non-binding 
reactivity, the Michaelis-Menten in equation (10) and the 
logistic in equation (11), we can clearly see that the 
following hierarchy exists 
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regardless of the time at which they are compared. 
Therefore, because the logistic probability UNREACTP  is 
lower than the Michaelis-Menten at all times, QSSA is 
better satisfied using the logistic approach. 
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Full Time Course Analysis  
 

Many biochemists use the velocity equations for 
kinetic parameter estimates despite the fact that the rates 
are difficult to determine experimentally. In practice either 
the substrate depletion or the product formation is 
measured as a function of time and the rates are calculated 
by differentiating the data, leading to an inexact analysis 
[13, 23]. Alternatively, the differential equations 
governing the biochemical reactions may be solved or 
approximated to obtain reactant concentration as function 
of time. This approach decreases the number of 
experimental assays by at least a factor of five, as proved 
by Schnell and Mendoza [14], because multiple 
experimental points may be collected for each single 
reaction.  

Unfortunately, until now, the most general analytical 
time-dependent solution for reaction (1) used the closed 
form (4) that has many mathematical disadvantages. For 
example it can return multiple values for the same 
argument [36] or result in an infinitely iterated exponential 
function [24].  

To test whether the logistic kinetic equation (13), 
which is a natural generalization of the Michaelis-Menten 
equation, may provide a workable analytical solution in an 
elementary form we first integrate the equation  
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generating the new equation to be solved:  
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Although apparently more complex than the previous 
version (3), equation (22) can be solved exactly. This can 
be demonstrated by substituting 

 ( )
MK
tStS )]([)]([ =ϕ                        (23) 

into (22) to get the simple equation: 
( ) ( )( ) )(1ln)]([ )]([ tetS tS ψϕ ϕ =−−− −           (24) 

where we have also introduced the functional notation:  
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Now the exact solution of equation (24) is a logistic 
expression: 

( ) ( ))(1ln)]([ tetS ψϕ −−=  .                (26) 
 

Finally, substituting function (25) into expression (26) 
gives the logistic progress curve for substrate consumption 
in an analytically elementary form:  
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This time-dependent solution (27) substitutes an 
elementary logarithmic dependency for the W-Lambert 
function. It is remarkable that the solution of a generalized 
logistic kinetic version of the Michaelis-Menten 
instantaneous equation provides an analytically exact 
solution. 

The cutting test is in the comparison of the progress 
curves generated by the W-Lambert (4) and logistic 
solutions (27) respectively. To do this, the following 
working formulas for the instantaneous complex [ES](t), 
product [P](t) and enzyme [E](t) concentrations are 
employed in both the W-Lambert (4) and logistic (27) 
versions of the binding substrate concentration, [S]W,L , 
according with Schnell and Mendoza [13]: 
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The transformation: 
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11
+
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t
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allows us to use scaled time for the abscissa so that an 
infinite time range can be mapped onto the interval [0,1].  
 

 
 

Fig. 2. Time dependent behavior of the reactant scaled 
concentrations (29) for the paradigmatic enzyme-
substrate reaction (1) when the basic (dashed lines) and 
generalized logistic (solid lines) versions of the 
Michaelis-Menten kinetic are employed, with the 
parametric values  k–1=k2=102s–1, k1=106M–1s–1, 
[S0]=10–4M,  and  [E0]=10–6M,  against  the  scaled  time  
                                               (30). 

 
Fig. 2 shows the plots of the W-Lambert and logistic 

progress curves (29) for an enzyme-catalyzed reaction in 
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vitro where k–1=k2=102s–1, k1=106M–1s–1, [S0]=10–4M, and   
[E0]=10–6M. 

The quantitative behavior of the reactant 
concentrations in both the W-Lambert and logistic cases 
are strikingly similar. In addition, time-dependent product 
curves may be used instead of the initial velocity curves in 
Fig. 1. However, the logistic product curves are smoother 
and at higher concentrations than those obtained from the 
W-Lambert approach due to the higher probability of 
reaction (see the discussion from the previous section).       

Having proved the reliability of the logistic time-
dependent form of the substrate depletion expression (27) 
compared to the W-Lambert-based expression (4) we 
propose the general transformation [37]:  

( ) ( )( )tfftff eefeefWf 32
1

32
21 11ln −− −+→  ,   (31) 

where 321 ,, fff  are factors that depend on MK  and 

maxV , which is used to transform the closed form 
solutions of enzymatic kinetics into elementary analytical 
expressions. The particular relevance of the replacement 
(31) may be visualized from the Fig. 3. 

As shown in Fig. 3, the difference in the shape of the 
curves generated by the general W-Lambert and natural 
logarithm functions (curve a) is almost completely 
removed when the W-Lambert time-dependent solution is 
replaced with the logistic one transformed as in (31) 
(curve b). This result suggests that using this logistic 
transformation (31) we get a good time-dependent 
representation over a broad range for enzymatic kinetics in 
vitro.  

 
 

Fig. 3. a) Comparison of the W-Lambert function 
(dashed line) with the logarithmic function (solid line) 
against positive ranged simple arguments; b) 
Comparison of the W-Lambert function (dashed line) 
with logistic function (solid line) when the arguments 
include the temporal dependencies as in (31), 
respectively, being all involved factors fixed to unity. The  
       time abscise scale in (b) is taken in arbitrary units. 
 
This procedure can be directly applied to the existing 

W-Lambert type solutions for many enzymatic reactions in 
vitro, e.g. for enzyme inhibitors, for fully competitive 
enzyme reactions, for the enzyme kinetics of multiple 

alternative substrates [37] or for reversible enzyme 
kinetics [38], making them more useful for fitting 
laboratory data [39-41]. 

 
Analysis of Fitting Curves  

 
Although they are able to use the progress curves for 

analysis of the data obtained from experimental assays, 
many biochemists prefer to use linear representations of 
enzyme kinetics. Instead of using the time-dependent 
solution (4), they rearrange the time-dependent equation 
(3) to a sort of time-dependent regression expression, for 
example, the reciprocal double plot equation:    
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A plot of equation (32) will yield a straight line with 

an intercept of max/1 V  and a slope of max/VK M  from 

which the kinetic parameters MK  and maxV  can be 
obtained.  

However, this approach has been criticized [40, 41] 
and it is worthwhile to investigate whether the exact 
logistic solution (27) may be better for fitting a linear 
curve.  

First, we take advantage of the fact that the logistic 
solution (27) has an elementary form to take its derivative 
with respect to time. This provides an expression for the 
instantaneous velocity (8) which can be transformed to the 
finite difference ( ) ttSS /)]([][ 0 − .  

Inversion of the result yields the expression:  
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Fig. 4. Time dependent representation of the fitting 
curves (32)-(34) for the parametric values k–1=k2=102s–1, 
k1=106M–1s–1, [S0]=10–4M, and [E0]=10–6M. The dashed 
line corresponds to equation (32) and involves the W-
Lambert closed form solution (4). The thin continuous 
line is the representation of linear equation (34) while 
the thick continuous line is the plot of non-linear 
equation (33) being both based on the logistic solution 
(27).  Abscise and ordinate scales  are  given in arbitrary  
                                         units. 
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Equation (33) is not a linear function, although it may 
be used for fitting the experimental time series data to 
determine the kinetic parameters MK  and maxV . To 
obtain a linear equation from expression (33), recall that, 
from the probabilistic perspective of enzymatic kinetics, 
the Michaelis-Menten equation is valid for fast reactions. 
Performing a first order expansion with respect to time on 
(33) gives the linear equation:    
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Fig. 4 shows the comparison between linear fitting 

equation (32) and the new logistic based expression (34) 
along with the nonlinear form (33), for the same 
parameters used in Figure 2 above. Generation of the 
curve for expression (32) required that the W-Lambert 
time-dependence of the substrate depletion be substituted 
for the time dependent substrate concentration. 

It is clear that the linear logistic curve (34) is nearly 
coincident with the Michaelis-Menten curve (32), both 
providing linear approximations of the general non-linear 
logistic curve (33).  This is the first instance of treating 
substrate-enzyme binding probabilistically and it has the 
advantage of avoiding use of the W-Lambert function, 
which is impossible to evaluate exactly. The resulting 
linear fitting curves are essentially the same with either 
approach.         

  
4. Conclusions 

 
This work provides both a new interpretation and a 

new equation for Michaelis-Menten enzyme kinetics in 
vitro. We interpret the reaction between a substrate and an 
enzyme as a probabilistic process of physical-chemical 
binding. A set of constraints on the reactive and unreactive 
probabilities is also given. In this context the Michaelis-
Menten unreactive term has the same form as the first 
order approximation of the more general logistic 
expression with respect to the degree of substrate-enzyme 
binding. The logistic version of the Michaelis-Menten 
equation and kinetics is thereby derived. The reliability of 
the logistic approach was tested by analyzing its ability to 
yield the quasi-steady-state approximation of enzyme-
substrate synthesis and an analytical representation of the 
progress curves for the reactants as well as to provide the 
associated fitting equation for estimation of the kinetic 
parameters MK  and maxV . In every case the logistic 
approach furnishes a better framework for characterizing 
and analyzing enzymic kinetics.  It has also been proved 
that, in general, the Michaelis-Menten approach resembles 
a first order approximation of the time-dependent or 
substrate binding ranges and thus characterizes only fast 
enzymatic reactions.  

From a mathematical perspective it is interesting to 
note that the more general probabilistic enzymatic kinetic 
problem is simpler than the classical Michaelis-Menten 
problem because the elementary solutions of the reactant 
progress curves and of the fitting equations is in better 
agreement with the quasi-steady-state condition. Although 
this probabilistic approach has been demonstrated 
theoretically, it would benefit from application to more 
complex experimental systems. The probabilistic approach 
in vitro may also be helpful in developing the stochastic or 
probability density-based biological theories needed to 
treat in vivo enzyme kinetics in the cell. Our effort to 
correlate in vitro and in vivo kinetics should strengthen the 
ability of biochemical kinetics to elucidate biomolecular 
functions, metabolism and the expression and transmission 
of genetic information. 
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