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Abstract: A novel quantitative structure-activity (property) relationship model, namely 

Spectral-SAR, is presented in an exclusive algebraic way replacing the old-fashioned 

multi-regression one. The actual S-SAR method interprets structural descriptors as vectors 

in a generic data space that is further mapped into a full orthogonal space by means of the 

Gram-Schmidt algorithm. Then, by coordinated transformation between the data and 

orthogonal spaces, the S-SAR equation is given under simple determinant form for any 

chemical-biological interactions under study. While proving to give the same analytical 

equation and correlation results with standard multivariate statistics, the actual S-SAR 

frame allows the introduction of the spectral norm as a valid substitute for the correlation 

factor, while also having the advantage to design the various related SAR models through 

the introduced “minimal spectral path” rule. An application is given performing a complete 

S-SAR analysis upon the Tetrahymena pyriformis ciliate species employing its reported 

eco-toxicity activities among relevant classes of xenobiotics. By representing the spectral 

norm of the endpoint models against the concerned structural coordinates, the obtained 

S-SAR endpoints hierarchy scheme opens the perspective to further design the eco-

toxicological test batteries with organisms from different species.              

Keywords: Multivariate correlations, Gram-Schmidt algorithm, Xenobiotics, Tetrahymena 

pyriformis 
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1. Introduction 

In Chemistry, the first systematic correlations come from Lavoisier's law of conservation of mass 

and energy, followed by the Dalton conception of structural matter. Nevertheless, Mendeleyev was the 

first one to place the structure-activity relationships (SARs) in the centre of chemistry with his vision 

of the periodic table [1]. However, with the advent of quantum theory, the relations among elements of 

periods and down groups of periodic table acquired in-depth quantitative meaning, by relating the 

elementary electronic structure with the manifested atomic reactivity through, for instance, basic 

electronegativity and chemical hardness indices [2,3]. This way, it appears that every aspect of 

chemical reactivity can be seen as a certain manifestation of the structure-property pair that is 

quantified since the derivation of the associated equation [4]. 

 

 

Figure 1. Generic world of the quantitative structure-activity/property relationships - QSA(P)R - 

through classical, 3D, decisional and orthogonal methods of multivariate analysis of the chemical-

biological interactions. In scheme MSD-MTD, CoMFA, and PCA stand for the “minimal steric 

difference-minimal topological difference”, “comparative molecular field analysis” and “principal 

component analysis”, respectively. 

Yet, the current problem of science is to organize the huge amount of experimental information in 

comprehensive equations with a predictive value. At this point, the quantitative structure-activity 

relationships (QSARs) methods seem to offer the best key for unifying the chemical and biological 

interaction into a single in vivo-in vitro content [5-10].    
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However, although the main purpose of QSARs studies is all about finding structural parameters 

that best correlate with the activity/property of the interactions observed, a multitude of methods of 

attaining this goal have appeared. They struggle to identify the most appropriate manner of quantifying 

the causes in such a way that they may be reflected in the measurement with maximal accuracy or 

minimal error. Phenomenologically, these methods can be conceptually grouped into “classical” 

[11-19], “3-dimensional” [20-30], “decisional” [31-42], and “orthogonal” ones [43-57], together 

represented as in Figure 1. 

In short, classic QSAR approaches assume as descriptors the structural indices that directly reflect 

the electronic structures of the tested chemical compounds. As such, they assume that the biological 

activity depends on factors describing the lipophylicity (e.g. LogP, surfaces), electronic effects (e.g. 

Hammett constants, polarization, localization of charges), and steric effects (e.g. Taft indices, Verloop 

indices, topological indices, molecular mass, total energy at optimized molecular geometry) [12, 13].  

A step forward is made when 3-dimensional structures are characterized by entry indices. For 

instance, the MTD (minimal topological difference) [23-25] and CoMFA (comparative molecular field 

analysis) [26, 27] methods are closely take into account the bioactive conformation of the receptor, the 

topology of the ligand series as well as their steric fit, in accordance with the “key-into-lock” principle, 

while the topographical schemes [29,30] make use of the graph representation of the chemical 

compounds, replacing in the associated connectivity matrices the optimized stereochemical indices. A 

visible increase in the structure-activity correlation is usually recorded when these methods are used 

[28].  

Still, statistically, it was found that in order for multiple linear regressions to be used, the 

requirement of a large number of compounds has to be met in order to explore the structural 

combination. Under these circumstances, the next QSARs category in Figure 1, namely the decisional 

one appears as further natural approach. Basically, they are heuristic methods of classifying data, 

developing genetic algorithms, i.e. neural networks [31,32], fuzzy methodologies [34,35], or support 

vector machine for learning [36-42], in order to find optimal solutions for combinatorial problems. 

They offer the advantage of providing a quick estimation regarding the quality of correlation we should 

expect from the data and furnishing several best regression models to decide upon. Moreover, the 

decisional analysis can be made in high-dimensional space always giving a solution by standard 

algorithm.  

Nevertheless, despite having several solutions to decide over thousands of products from millions of 

libraries, together with hundred descriptors, that opens the problem of their further relevance and 

classification. With these we have arrived at the heart of a QSAR analysis: the orthogonal problem. 

Statistically, this term was interpreted as descriptors whose values form a basis set that pose little inter-

correlation factors. In practice, data reduction techniques such as PCA (principal component analysis) 

[43,45] describe biological activity or chemical properties through a fewer number of independent 

(orthogonal) descriptors giving a regression equation on these principal components. Unfortunately, 

even combined with PLS (partial least squares) cross-validation technique to produce higher predictive 

QSAR models, the main drawback still remains since they furnish scarce possibility to interpret the 

obtained models [44,46].  
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Another way of interpreting orthogonality was given through producing an orthogonal space by 

transforming the original basis set of descriptors in an orthogonal one by searching of inter-regression 

equations between them [47], followed, eventually, by their reciprocal subtractions [48]. Unfortunately, 

this method was found to give in almost all cases the same correlation and statistical factors as those 

furnished by regressions with original basis set of descriptors [49-54], moreover, producing a QSAR 

equation in the orthogonal space where the orthogonal descriptors have little interpretation against the 

real ones. At the end, the orthogonal descriptors’ method becomes another technique for selecting the 

independent predictor variables (like PCA) rather than one that provides alternative solution for basic 

SAR problem [55].  

Under these circumstances, the third attempt of interpreting the orthogonal problem is considering 

the scalar product as the main vehicle in releasing the QSAR solution in a completely algebraic way 

thus furnishing the so called Spectral-SAR (S-SAR) technique in Figure 1 for reasons revealed bellow. 

It is based on the employment of the generalized Euclidian scalar product rule among the vectors 

associated to the descriptors’ data in a way that produce, thought the Gram-Schmidt algorithm and 

coordinate transformation, precisely the same results as the statistical multi linear regression techniques 

do. This new QSAR method, initiated in a relatively limited dissemination space [56,57], is presented 

in full here, while also giving its equivalence with the standard multiple linear regression method. 

Nevertheless, the features of the present S-SAR method include some of its predecessor's, including 

vectorial frame and output, high-dimensionality for the data space, adaptive analysis, showing, 

however, independence concerning the order of orthogonal vectors and also proving the spectral norm 

as an alternative algebraic tool for substituting of the statistical correlation factor.  

The field of ecotoxicology was chosen as an application, where various combined S-SAR-Hansch 

models are constructed for describing the toxicity of 26 xenobiotics on the Tetrahymena pyriformis 

species. It follows that S-SAR approach gives the specific algebraic tool, i.e. the spectral norm, with 

which the specific ecotoxicological endpoint concept acquires new feasible degree. The present S-SAR 

analysis leaves room for other similar studies when it is joined with other classical, 3-dimensional and 

decisional QSAR techniques of Figure 1 so contributing to unite the chemical-biological interactions in 

a veritable QSAR science.                       

2. The Spectral-SAR Method 

2.1. Background Concepts  

The basic problem of structure-activity relationship analysis can be formulated as follows: given a 

set of measured activities of a certain series of (say N) compounds, the optimal correlation between 

these activities and the structural (internal, intrinsic) properties of the compounds (say M properties) is 

sought, according to Table 1, in the form of the general multi-linear equation:  
exbxbxbby MMkk ++++++= ......110 . (1) 

In equation (1) y represents the generic activity in relation with an arbitrary set of independent 

variables xi, i=1, …, M through the fixed parameters bj, j=0, …, M, while e stands as the residual or 

error value between the assumed multi-linear model and measurements.  
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Therefore, the SAR problem becomes quantitative since the set of fixed parameters is determined so 

that the errors in activity evaluation are minimized. This way, the equation (1) may be used to predict 

the activity (without experimental measurement) for each further input of the structural parameters.  

Table 1. Synopsis of the basic SAR descriptors. 

Activity Structural predictor variables 

y1 x11 … x1k … x1M 

y2 x21 … x2k … x2M 

M  M  M  M  M  M  

yN xN1 … xNk … xNM 

     

However, this "Holy Grail" property of a QSAR equation opens the issue of significance and 

statistical relevance of the values considered in Table 1, as well as that of the computational method by 

which the parameters of (1) are assessed.        

Usually, the QSAR problem is solved in the so called "normal or "standard" way, briefly described 

in what follows. Firstly, the equation (1) is particularized for each activity entry of Table 1 thus 

generating the N×(M+1) system:  

11111101 ...... exbxbxbby MMkk ++++++=  

22221102 ...... exbxbxbby MMkk ++++++=  

M  

NNMMNkkNN exbxbxbby ++++++= ......110  

(2) 

Note that, generally, each activity evaluation is assumed to be accompanied by a different error, i.e. the 

values e1, …, eN are potentially different although the ideal case would demand that they be equal with 

zero.      

However, since the following matrices are introduced  
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the system (2) can be rewritten in a simple algebraic way:  

EXBY += . (4) 

Hence, the minimization of the error vector E equals the minimization of the vector (Y-XB) in (4).  
Put in vectorial terms, the solution of the supra-dimensional system (2) is a vector )(Bφ  which 

minimizes the Euclidian norm of the residual (error) vector, in a least square sense: 

( ) ( ) min)( →−−= XBYXBYB Tφ . (5) 

Finally, one uses the following theorem [58-61]: if the vector B of (3) is the solution of the linear 

system (6), 
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( ) 0=− XBYX T , (6) 

where X is a real matrix of dimension N×(M+1) and B a vector of dimension (M+1)×1, then the 

standard deviation of XB with respect to Y is minimal, i.e. the condition (5) is fulfilled.  
This means that we can consider 0)( →Enorm  when relations (4) and (6) are combined to give the 

B vector of estimates 

( ) YXXXB TT 1−
= . (7) 

It is worth noting that while solution (7) solves the above QSAR problem in a formal way the 

concrete application of this method requires a high computational effort even when the symmetry of 

the matrix XTX is taken into account.   

Despite this, the “normal” or “standard” QSAR procedure is already implemented in various 

software packages nowadays. It is worth exploring other alternative way that may serve both 

conceptual and computational advantages. The so called ”spectral” algorithm, presented below, stands 

as such a new perspective, belonging to “orthogonal QSAR” methods of Figure 1. 

2.2. Spectral-SAR Algorithm  

The key concept in SAR discussion regards the independence of the considered structural 

parameters in Table 1. As a consequence we may further employ this feature to quantify the basic SAR 

through an orthogonal space.  

The idea is to transform the columns of structural data of Table 1 into an abstract orthogonal space, 

where necessarily all predictor variables are independent, see Figure 2; solve the SAR problem there 

and then referring the result to the initial data by means of a coordinate transformation.  

The analytical procedure is unfolded in simple tree steps. 

 

 
 

Figure 2. Generic mapping of data space containing the vectorial sets{ }O,X  into orthogonal basis 

{ })O(,)X( ΩΩ . 
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Basically, Table 1 is reconsidered under the form of Table 2 where, for completeness, the unity 
column has been added 1...110 =X  for accounting of the coefficients of the free term (b0) of 

system (2).  

Table 2. The spectral (vectorial) version of SAR descriptors of Table 1. 

Activity Structural predictor variables 

Y  0X  
1X  

… 
kX  … 

MX  

y1 1 x11 … x1k … x1M 

y2 1 x21 … x2k … x2M 

M  M  M  M  M  M  M  

yN         1 xN1 … xNk … xNM 

 

Moreover, since the columns are now considered as vectors in data space we are looking for the 
“spectral” decomposition of the activity vector Y upon the considered basis of the structural 

vectors{ }Mk XXXX ,...,...,,, 10 :    

eXbXbXbXbY MMkk ++++++= ......1100 . (8) 

Equation (8) stands, in fact, as a spectral decomposition counterpart of the multi-linear equation (1), 

equation that the name of the present approach comes from.  
The next step is to construct a vectorial algorithm so that the residual vector e  can be sent to zero 

in (8) in order to fulfill the above (5) condition of minimizing of errors.   

To achieve the minimal errors in (8) the transformation of the data basis 

{ }Mk XXXX ,...,...,,, 10  into an orthogonal one, say { }Mk ΩΩΩΩ ,...,...,,, 10 , is now 

considered. In this respect the consecrated Gram-Schmidt procedure is employed. It is worth noting 

that this procedure is well known in quantum chemistry when searching for an orthogonal basis for an 

orthogonal basis set in atomic and molecular wave function spectral decomposition [62].  

However, before applying it effectively one has to introduce the generalized scalar product 

throughout the basic rule: 

lk

N

i
ikilkl ΨΨ==ΨΨ ∑

=1

ψψ  (9) 

giving out a real number from two arbitrary N-dimensional vectors 

Nllll ψψψ ...21=Ψ   Nkkkk ψψψ ...21=Ψ .  

Briefly, remember that the orthogonal condition requires that the scalar product of type (9) to be 

zero, the orthogonal basis{ }Mk ΩΩΩΩ ,...,...,,, 10 can be constructed from the set 

{ }Mk XXXX ,...,...,,, 10  according with the iterative recipe: 

i. Choose 

00 X=Ω ; (10) 

, 
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ii. Then, by picking  1X  as the next vector to be transformed, one can write that: 

0
1
011 Ω−=Ω rX , 

00

011
0

ΩΩ

Ω
=

X
r  (11) 

so that 010 =ΩΩ  assuring so far that 0Ω  and 1Ω  are orthogonal. 

iii. Next, repeating steps i. and ii. above until the vectors 0Ω , 1Ω , …, 1−Ωk  are 

orthogonally constructed , we can, for instance, further transform the vector kX into : 

i
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ii
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=  (12) 

so that the vector  kΩ  is orthogonal on all previous ones. 

iv. Step (iii) is repeated and extended until the last orthogonal predictor vector MΩ  is obtained. 

Therefore, grounded on the Gram-Schmidt recipe the starting predictor vectorial basis 

{ }Mk XXXX ,...,...,,, 10  is replaced with the orthogonal one { }Mk ΩΩΩΩ ,...,...,,, 10  by 

appropriately subtracting from the original vectors the non-wished non-orthogonal contributions. Note 

that the above procedure holds for any arbitrary order of original vectors to be orthogonalized.  
Within the constructed orthogonal space, the vector activity Y  achieves true spectral 

decomposition form: 

MMkkY Ω++Ω++Ω+Ω= ωωωω ......1100 . (13) 

Note that the residual vector in equation (8) has disappeared in (13) since it has no structural 

meaning in the abstracted orthogonal basis. Or, alternatively, one can say that in the abstract orthogonal 
space the residual vector e  was identified with the vector with all components zero 0,...,0,0  that is 

always perpendicular with all other vectors of orthogonal basis.  
This way, the Gram-Schmidt algorithm, by its specific orthogonal recursive rules, absorbs or 

transforms the minimization condition of errors in (8) to simple identification with the origin of the 
orthogonal space of data.   

At this point, since there is no residual vector remaining in (13) one can consider that the SAR 

problem is in principle solved once the new coefficients in (13) ( Mk ωωωω ...,,...,,, 10 ) are determined. 

These new coefficients can be immediately deduced based on the orthogonal peculiarities of the 
spectral decomposition (13) grounded on the fact that: 

lklk ≠=ΩΩ ,0 , (14) 

a condition assured by the very nature of the vectors from the constructed orthogonal basis. 
As such, each coefficient comes out as the scalar product of its specific predictor vector with the 

activity vector (13) is performed: 

kk

k

k

Y

ΩΩ

Ω
=ω , Mk ,0= . (15) 
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With coefficients given by expressions of type (15) the spectral expansion of the activity vector into 

an orthogonal basis (13) is completed. Yet, this does not mean that we have found the coefficients that 

directly link the activity with the predictor vectors as equation (8) demands.  

However, this goal is easily achieved through the final stage of the present SAR algorithm. It 

consists in going back from the orthogonal to the initial basis of data through the system of coordinate 

transformations: 
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While the first equation of (16) reproduces the entire spectral decomposition (13), the rest of them 

are convenient rewritings of the Gram-Schmidt transformations (10)-(12).  
Finally, the system (16) is algebraically true if and only if the associated augmented determinant 

disappears, 
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, (17) 

this being the condition consecrated by the theorem according to which a system possessing a column 

as a linear combination of all others has a  zero allied determinant [58]. 

It is worth noting that the minimization of residual errors was unnecessarily complicated in previous 

orthogonalization approaches [54] by involving standard multi-linear regressions, iteratively, among 

the selected structural descriptors and of their combination [53]. This way, the flavor of performing an 

alternative orthogonal approach of the SAR issue was lost in an ocean of inter-correlations. 

Consequently, the heuristic methods used in the search for an orthogonal set of descriptors, in the 

regression sense, though an arbitrarily minimal inter-correlation factors, leave both the realistic 

meaning of the usually lesser set of orthogonalized descriptors, as compared with the original one, and 

the initial SAR problem to be solved. On the contrary, within the present orthogonal endeavor, the 

Spectral-SAR method proposes a new way of completely solving of a SAR problem linking the 

measured activities (or observed properties) with the structural descriptors in a simpler and more 

transparent algebraic way than the “standard” multi-linear regression method do.  
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Moreover, the ordering problem in all previous orthogonal descriptors’ methods [54] is eliminated 

with the present S-SAR analysis since all structural descriptors are spectrally expanded at once 

complying with the orthogonal basis, as Eq. (16) reveals, avoiding iterative reciprocal correlations 

among orthogonal descriptors where their considered order becomes essential. This special feature of 

S-SAR will be illustrated later, in the application section.      

It is now clear that once expanded, observing its first column, the determinant (17) generates the 

searched full solution of the basic SAR problem of Table 2 with minimization of errors included and 

independent of the orthogonalization order. Remarkably, apart from being conceptually new through 

considering the spectral (orthogonal) expansion of the input data space (of both activity and 

descriptors) through the system (16), the present method also has the computational advantage of being 

simpler than the classical “standard” way of treating SAR problem previously exposed. That because, 

one has nothing to do with computations of matrix of the coefficients (7), this being a quite involving 

and time consuming procedure. Instead, one can write directly the spectral-SAR solution (equation) as 

the expansion of a (M+2)-dimensional determinant of type (17) whose components are the activity and 

structural vectors among the Gram-Schmidt and the spectral decomposition coefficients, l
kr  and kω , 

respectively.  

However, although different from the mathematical procedure, both standard- and spectral-SAR 

give similar results due to the theorem that states that [61]: if the matrix X, as that from (3), with 

dimension N×(M+1), N>M+1, has linear independent columns, i.e. they are orthogonal as in the 

spectral approach, then there exists an unique matrix Q of dimension N×(M+ 1) with orthogonal 

columns and a triangular matrix R of dimension (M+1)×(M+ 1) with the elements of the principal 

diagonal equal with 1, as identified in the first small determinant in (17), so that the matrix X can be 

factorized as 

X=QR. (18) 

When combining equation (18) with the optimal equation (6) one can get, after straight algebraic 

rules, that the B vector of estimates takes the form 

( ) YQQQB TT 1−
= , (19) 

in close agreement with previous normal one, see equation (7). However, by comparison of matrices 

XTX and QTQ in equations (7) and (19), respectively, there is clear that the last case certainly furnishes 

a diagonal form which for sure is easier to handle (i.e. to take its inverse) when searching for the vector 

B of SAR coefficients.  

With these considerations one would prefer the present Spectral-SAR approach when solving the 

QSAR problems in chemistry and related molecular fields. Nevertheless, wishing to also provide a 

practical advantage of the exposed Spectral-SAR scheme, a specific application, with relevance in 

ecotoxicological studies, is presented in the next section.  

3. Application to Ecotoxicology  

3.1 Basic Characteristics of QSAR in Ecotoxicology 

From more than one decade the European Union institutions, e.g. Organization for Economic Co-

operation and Development (OECD) through its Registration, Evaluation, and Authorization of 
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Chemicals (REACH) management system [63, 64], the United States Environmental Protection 

Agency (EPA) as part of the premanufactory notification assessment, as well as the World Health 

Organization have been developing impressive programs on the regulatory assessment of chemical 

safety by using of the QSAR data bases and of the associated automated expert systems [65-73]. This 

because, with the tones of chemicals that force their way onto the market each year and due to their 

commercial and industrial disposal into the environment, it becomes of first importance to predict their 

toxicological activities from the molecular structure in order to properly design the risk assessment 

measures [67-77].  

Nevertheless, in order to best accomplish such a goal, both a conceptual and a computational 

strategy need to be adopted. As such, while, for instance, a certain set of parameters has been identified 

for environmental studies, i.e. bioaccumulation, chemical degradation (aqueous and gas phase), 

biodegradation, soil sorption, and ecotoxicity, two major aspects have been identified for QSAR 

analyses, namely the quality and the chemical domain of the QSAR [69,71,72].  

Concerning the parameters to be evaluated, they are analytically transposed into the so called 

endpoints, representing specific experimental and measurement quantities giving information about the 

environmental risk degree. They are thus identified with the QSAR activities (biophores or 

toxicophores) to be correlated and are usually expressed as log-based continuous toxicological data 

(e.g. median lethal concentration-LC50, 50% effect concentration-EC50, 50% grow inhibition 

concentration-IGC50) [74-77].  

On the other hand, a useful QSAR model has to satisfy selection criteria in order to be validated.  

From the statistical point of view the ratio of data points to the number of variables should be higher 

or equal to 5 (the so called Topliss-Costello rule [78]) and to provide a correlation factor 84.0>r .  

As descriptors, those directly related to molecular structure of chemical are preferable. It is worth 

noting here that the quantum chemical parameters have an advantage against those of topological 

nature; still the quantum parameters to be used has to be relatively easily obtainable, for instance those 

based on ground state or valence state properties of compounds are preferable to those based on 

transition-state calculations [10].  

If descriptors are taken from experiments, the experimental conditions must be specified. 

Nevertheless, the best models predicting ecotoxic effects have to be mechanistic interpretable, though 

that structure-activity correlation permits reconstruction or prediction of the basic phenomena that take 

place at the molecular level.  

Regarding the outliers they have to be treated with caution, as they are not necessarily outside of the 

chemical domain but depending on the QSAR model (i.e. of the correlated descriptors) employed [79]. 

Moreover, the atypical data (presumed outliers) may represent compounds acting by a different 

mechanism, inducing an inhibition or belonging to dissimilar chemical structure. However, they should 

not be excluded from an analysis unless relevant alternative QSAR models were constructed. With this 

issue, we arrive at the chemical domain problem or at the representative set of compounds for the 

QSAR analysis.  

Based on previous criteria in order for a QSAR analysis to be well conducted, a compromise 

between breath (variety) and depth (representability) characteristics through the existing chemicals 

within that domain have to be considered.  
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This way, the two-fold process of dissimilarity- and similarity- based selection is achieved [10]. The 

motivation for this criteria is that, while similar compounds (usually based on substitutions) assures the 

basic congenericity QSAR condition,  considering dissimilar chemicals can predict how (however 

subtle) alterations in molecular structure can lead to changes in the mechanism of toxicity action and 

potency in the tested series of compounds. In short, this condition can be regarded as structural 

heterogeneity of compounds. 

After all, it is widely recognized that ecotoxicity action is a multivariate process involving 

xenobiotics leading with immediate and long-term effects due o various transformations products. 

Therefore, a QSAR approach may provide information of the bio-up-take (i.e. of key process) through 

the selected descriptors that can be integrated in an expert system of toxic prediction.  

However, with a view to designing an ecotoxicological mechanistic battery for different species on 

QSAR grounds, the first stage of unicellular organism level is undertaken here. 

3.2 Bio-ecological Issues of Unicellular Organisms 

We often think of unicellular organisms as having a simple, primitive structure. This is definitely an 

erroneous view when applied to the ciliates; they are probably the most complex of all unicellular 

organisms.  

Unlike multicellular organisms, which have cells specialized for performing the various body 

functions, single-celled organisms must perform all these functions with a single cell, and so their 

structure may be much more complex than the cells of larger organisms.  

Movement, sensitivity to the environment, water balance, and food capture must all be 

accomplished with the machinery in a single cell [80,81a-d]. As protozoans these organisms are 

classified according to their means of locomotion: by cilia (Ciliophora), flagella (Sarcomastigophora), 

or pseudopodia (Rhizopoda), while non-motile protists are classified as sporozoans in the phylum 

Apicomplexa.   

Many of these single-celled organisms feed by engulfing smaller organisms directly into temporary 

intracellular vacuoles.  These food vacuoles circulate in a characteristic manner within the cells while 

enzymes are secreted into them for digestion [81b].  

However, form the taxonomy points of view they are classified downwards, from kingdom to 

species as: Protista > Ciliophora > Cyrtophora > Oligohymenophorea > Hymenostomatia > 

Hymenostomatida > Tetrahymeni > Tetrahymenidae > Tetrahymena [81c]. 

However, it is worth restricting the discussion to ciliates only since they include about 7500 known 

species of some of the most complex single-celled organisms ever, as well as some of the largest free-

living protists; a few genera may reach two millimeters in length, and are abundant in almost every 

environment with liquid water: ocean waters, marine sediments, lakes, ponds, and rivers, and even 

soils. Because individual ciliate species vary greatly in their tolerance of pollution, the ciliates found in 

a body of water can be used to gauge the degree of pollution quickly.  

More specifically, ciliates are classified on the basis of cilia arrangement, position, and 

ultrastructure. Such work now involves electron microscopy and comparative molecular biology to 

estimate relationships.  
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In the most recent classification of ciliates, the group is divided into eight classes: Prostomatea 

Benthic and Karyorelictida Benthic (mostly in marine forms), Litostomatea (including Balantidium 

and Didinium), Spirotrichea (including Stentor, Stylonychia, and tintinnids), Phyllopharyngea 

(including suctorians), Nassophorea (including Paramecium and Euplotes), Oligohymenophorea 

(including Tetrahymena, Vorticella and Colpidium), and Colpodea (including Colpoda) [81a]. 

Nevertheless, most frequently studied unicellular organisms through QSAR toxicological analysis 

are from the Tetrahymena genus of ciliated protozoa. All species of the genus Tetrahymena are 

morphologically very similar; they display multiple nuclei: a diploid micronucleus found only in 

conjugating strains and a polyploid macronucleus present in all strains, which is the site of gene 

expression during vegetative growth, see Figure 3 [82,83].  

Tetrahymena species are very common in aquatic habitats and are non-pathogenic, have a short 

generation time and can be grown to high cell density in inexpensive media [81d]. As such, ecological, 

morphological, biochemical, and molecular features have been used over the years in attempts to 

classify them.  

 

 

Figure 3. Illustration of the oral region of Tetrahymena pyriformis during ingestion as taken by 

electron micrograph technique [83]. 

The earliest classifications were based on morphological and ecological data. At this level the 

presence or absence of a caudal cilium was regarded as an important character. Later, three 

morphological species complexes were distinguished: the pyriformis complex with smaller, 

bacterivorous species and less somatic kinetics; the rostrata complex with larger parasitic or 

histophagous species, more somatic kinetics, and the ability to form resting cysts; and the patula 

complex with species that undergo microstome-macrostome transformation. Within the complexes, 

particularly the pyriformis complex, species are distinguishable by their mating capacity and/or 

isozyme patterns. Finally, another approach based on the degree of parasitism was suggested. Since, 

the Tetrahymena species are free-living, as well as facultative and obligate parasites, it was suggested 
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an evolutionary lineage from free-living species, considering Tetrahymena pyriformis to be the basal 

species, to facultative parasites, and then to obligate parasites [80,81a,82,84]. 

Accordingly, Tetrahymena pyriformis, a teardrop-shaped, unicellular, ciliated freshwater protozoan 

about 50 µm long, is found as the best candidate whose ecotoxicological activity is considered through 

the present S-SAR toward establishing a mechanistically coherent view of a certain class of 

xenobiotics on inter-correlated species.    

3.3 Spectral-SAR Ecotoxicity of Tetrahymena pyriformis 

Quite often, despite the tendency to submit a large class of descriptors to a QSAR analysis, this is 

not the best strategy [69], at least in ecotoxicology, and whenever a specific mode of action or the 

elucidation of the causal mechanistically scheme is envisaged.  

More focused studies in ecotoxicology, and especially regarding T. pyriformis, have found that 

hydrophobicity (LogP) and electrophilicity (ELUMO) phenomena plays a particular place in explaining 

the ecotoxicology of the species.  

While hydrophobicity describes the penetration power of the xenobiotics though biological 

membranes, the other descriptors to be considered reflect the electronic and specific interaction 

between the ligand and target site of receptor.  

Moreover, it was convincingly argued that the classical Hammett constant can be successfully 

rationalized by a pure structural index as the energy of the lowest unoccupied molecular orbital 

(LUMO) is [79]. These facts open the attractive perspective of considering the ecotoxicological studies 

through employing the Hansch-type structure-activity expansion: 
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thus also providing enough information from transport, electronic affinity and specific interaction at 

the molecular level, respectively.  

However, in the present study, besides considering LogP as compulsory descriptor the molecular 

polarizability (POL) will be considered for modelling the electronic affinity for its inherent definition 

that implies the radius of the electrostatic sphere of electrostatic interaction. This way, the first stage of 

binding, through the radius of interaction, is accounted [85].  

Then, the steric descriptor is chosen here, for simplicity, as the total molecular energy (ETOT) in its 

ground state, for the reason that it is calculated at the optimum molecular geometry where the stereo-

specificity is included.  

Under these circumstances the ecotoxic activity to Tetrahymena pyriformis, determined in a 

population growth impairment assay with a 40 h static design and population density measured 

spectrophotometrically as the endpoint A=Log (1/IGC50) [86-90], from a series of xenobiotics of which 

majority are of phenol type is in Table 3  considered.  

It is worth mentioning that the number of compounds is in relevant ratio with the number of 

descriptors used, according with above Topliss-Costello rule, and that both chemical variability and 

congenericity are fulfilled since most of them reflect the phenolic toxicity.    
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 Table 3. The series of the xenobiotics of those toxic activities A= Log(1/IGC50) were considered [86] 

along structural parameters LogP, POL (Å3), and ETOT (kcal/mol) as accounting for the hydrophobicity, 

electronic (polarizability) and steric (total energy at optimized 3D geometry) effects, respectively, 

derived with the help of HyperChem program [91]. 

Compound A 1  Log P POL ETOT 

No. 
Name Formulae Y  0X  1X  2X  3X  

1 methanol CH3OH -2.67 1 -0.27 3.25 -11622.9 

2 ethanol C2H5OH -1.99 1 0.08 5.08 -15215.4 

3 butan-1-ol C4H9OH -1.43 1 0.94 8.75 -22402.8 

4 butanone C4H8O -1.75 1 1.01 8.2 -21751.8 

5 pentan-3-one C5H10O -1.46 1 1.64 10.04 -25344.6 

6 phenol C6H5OH -0.21 1 1.76 11.07 -27003.1 

7 aniline C6H5NH2 -0.23 1 1.26 11.79 -24705.9 

8 3-cresol CH3-C6H4-OH -0.06 1 2.23 12.91 -30597.6 

9 4-methoxiphenol OH-C6H4-O-CH3 -0.14 1 1.51 13.54 -37976.3 

10 2-hydroxyaniline OH-C6H4-NH2 0.94 1 0.98 12.42 -32095.4 

11 Benzaldehyde C6H5-CHO -0.2 1 1.72 12.36 -29946.9 

12 2-cresol CH3-C6H4-OH -0.27 1 2.23 12.91 -30597.2 

13 3,4-dimeyhylphenol C6H3(CH3)2OH 0.12 1 2.7 14.74 -34190.8 

14 3-nitrotoluene CH3-C6H4-NO2 0.05 1 0.94 13.98 -42365.1 

15 4-chlorophenol C6H5-O-Cl 0.55 1 2.28 13 -35307.6 

16 2,4-dinitroaniline C6H3(NO2)NH2 0.53 1 -1.75 15.22 -63030.2 

17 2-methyl-1-4-naphtoquinone C11H8O2 1.54 1 2.39 20.99 -49768.3 

18 1,2-dichlorobenzene C6H4Cl2 0.53 1 3.08 14.29 -36217.2 

19 2,4-dinitrophenol C6H3(NO2)OH 1.08 1 1.67 14.5 -65318 

20 1,4-dinitrobenzene C6H4N2O4 1.3 1 1.95 13.86 -57926.7 

21 2,4-dinitrotoluene C7H6(NO2)2 0.87 1 2.42 15.7 -61520.7 

22 2,6-ditertbutil 4-methyl phenol C15H23OH 1.8 1 5.48 27.59 -59316.5 

23 2,3,5,6-tetrachloroaniline C6H3NCl4 1.76 1 3.34 19.5 -57920.2 

24 penthaclorophenol C6Cl5OH 2.05 1 -0.54 20.71 -68512.4 

25 phenylazophenol C12H10N2O 1.66 1 4.06 22.79 -55488.9 

26 pentabromophenol C6Br5OH 2.66 1 5.72 24.2 -66151.5 
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Table 4. QSAR equations through standard multi-linear routine of Satistica package [92] for all 

possible correlation models considered from data of Table 3. 

Model  Variables QSAR Equation r s F 

Ia logP IaA = –0.547836+0.435669logP 0.539 1.15 9.834 

Ib POL IbA = –2.84021+0.2166POL 0.908 0.574 112.15 

Ic ETOT IcA = –2.50233–0.00007 ETOT 
0.882 0.644 84.015 

IIa logP, 

POL 

IIaA = –2.91377–0.08109logP 

           +0.23233POL 

0.911 0.58 55.930 

IIb logP, 

ETOT 

IIbA = –2.64602+0.22991logP 

             –0.00006 ETOT 

0.922 0.54 65.339 

IIc POL, 

ETOT 

IIcA = –2.98407+0.13427POL 

             –0.00003 ETOT 

0.939 0.478 86.503 

III logP, 

POL, 

ETOT 

IIIA = –2.94395+0.06335logP 

            +0.11206POL 

            –0.00004ETOT 

0.941 0.48 56.598 

 

The standard QSAR analysis of data of Table 3 for all possible models of actions reveals the 

multivariate equations displayed in Table 4, together with their associate statistics:  
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as correlation factor, standard error of estimate and Fisher index, respectively, in terms of the total 

number of residues, measuring the spreading of the input activities with respect to their estimated 

counterparts, 
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measuring the dispersion of the measured activities around their average: 
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while the number of compounds and descriptors were fixed to N = 26 and M = 3, in each endpoint 

case, respectively. 

Before attempting a mechanistic analysis of the results, let us apply the S-SAR techniques to the 

same data of Table 3 by using the key (or spectral) equation-type (17) with the associated determinant 

completed with orthogonal and spectral coefficients of Eqs. (12) and (15), in each considered model of 

ecotoxic action, respectively.  

More explicitly, in equations (27)-(29), the spectral equations are presented with their determinant 

forms that once expanded produce the spectral multi-linear dependencies of Table 5.  

(Ia): 0

187808.1

01

435669.0270385.0

1

0 =
X

X

Y
Ia

or 0

1304687.0

01

547836.0268751.0

0

1 =
−

X

X

Y
Ia

,   (27a) 

(Ib): 0

13612.14

01

216598.0270385.0

2

0 =
X

X

Y
Ib

or 0

10607278.0

01

84021.20441181.0

0

2 =
−

X

X

Y
Ib

, (27b) 

   (Ic): 0

15.40857

01

000067863.0270385.0

3

0 =
−

−

X

X

Y
Ic

or 0

10000208433.0

01

50233.20000157064.0

0

3 =
−

−−

X

X

Y
Ic

,  (27c) 

(IIa ): 0

122431.23612.14

0187808.1

001

232325.0435669.0270385.0

2

1

0 =

X

X

X

Y
IIa

, (28a) 

(IIb ): 0

15.33835.40857

0187808.1

001

0000608117.0435669.0270385.0

3

1

0 =

−−

−

X

X

X

Y
IIb

, (28b) 

(IIc ): 0

137.25365.40857

013612.14

001

0000324573.0216598.0270385.0

3

2

0 =

−−

−

X

X

X

Y
IIc

, (28c) 

(III ): 0

157.33065.33835.40857

0122431.23612.14

00187808.1

0001

0000363728.0232325.0435669.0270385.0

3

2

1

0

=

−−−

−

X

X

X

X

Y
III

. (29) 



Int. J. Mol. Sci. 2007, 8                                                                                                                         380 
 

 

Table 5. Spectral structure activity relationships (S-SAR) through determinants of Equations (27)-(29) 

for all possible correlation models considered from the data in Table 3. 

Models Vectors S-SAR Equation 

Ia 
0X , 1X  Ia

Y = –0.547836 0X +0.435669 1X  

Ib 
0X , 2X  Ib

Y = –2.84021 0X +0.216598 2X  

Ic 
0X , 3X  Ic

Y = –2.50233 0X –0.000067863 3X  

IIa 
0X , 1X , 2X  IIa

Y = –2.91377 0X –0.0810929 1X +0.232325 2X  

IIb 
0X , 1X , 3X  IIb

Y = –2.64602 0X +0.229913 1X –0.0000608117 3X  

IIc 
0X , 2X , 3X  IIc

Y = –2.98407 0X +0.134274 2X –

0.0000324573 3X  

III 
0X , 1X , 2X , 3X  

III
Y = –2.94395 0X +0.0633549 1X –0.112056 2X  

–0.0000363728 3X  

 

Remarkably, one may easily note the striking similitude of the equations in Tables 4 and 5, 

respectively. Moreover, in equations (27) the spectral determinant was written in both possible ways of 

orthogonalization, nevertheless leading to the same results in Table 5. That is the computational proof 

that Spectral-SAR indeed provides a viable alternative to standard QSAR at each level of modelling, 

being independent of number of descriptors, compounds, or order of orthogonalization. We advocate 

on the computational advantage of S-SAR though lesser steps of computation and by the full 

analyticity of the delivered structure-activity equation, through a simple transparent determinant.  

However, conceptually, S-SAR achieves a degree of novelty with respect to normal QSAR though 

that the spectral equation is given in terms of vectors rather than variables. Such features marks a 

fundamental achievements since this way we can deal at once with whole available data (of activity 

and descriptors) within a generalized vectorial space. Consequently, we may also use the spectral norm 

of the activity, 
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as the general tool by means which various models can be compared no matter of which dimensionality 

and of which multi-linear degree since they all reduce to a single number. This could help fulfill 

QSAR's old dream of providing a conceptual basis for the comparison of various models and end 

points by becoming a true science. Even more, while also accurately reproducing the statistics of the 

standard QSAR, the actual S-SAR permits the introduction of an alternative way of computing 

correlation factors by using the above spectral norm concept. As such the so called algebraic S-SAR 
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correlation factor is defined as the ratio of the spectral norm of the predicted activity versus that of the 

measured one:  

MEASURED

PREDICTED

ALGEBRAIC
SARS

Y

Y
r =− , (31) 

Applying Eq. (31) to the present case of the measured spectral norm of T. pyriformis activity 

83243.6=MEASURED
Y  the algebraic S-SAR correlation factors for the actual predicted models are 

given in Table 6 along the individual spectral norm of activity and the standard statistical correlation 

factor values.   

Table 6.  The predicted spectral norm, the statistic and the algebraic correlation factors of the S-SAR 

models of Table 5, computed upon the general Eqs. (30), (21), and (31) since the entry data of Table 3 

are employed, respectively.  

 Ia Ib Ic IIa IIb IIc III 

PREDICTED
Y  3.86176 6.22803 6.0607 6.24858 6.32297 6.43641 6.44557 

STATISTIC
SARSr −

 0.53905 0.90759 0.88193 0.91074 0.92214 0.9395 0.9409 

ALGEBRAIC
SARSr −  0.56521 0.91154 0.88705 0.91455 0.92543 0.94204 0.94338 

 

The findings in Table 6 are twice relevant: first, because it is clear that the spectral norm parallels 

the statistic correlation factor; second, because, since the introduced algebraic correlation factor does 

the same job, it poses slightly higher values on a systematic basis.  

In other words, one can say that in an algebraic sense the S-SAR furnishes systematically higher 

correlation factors than the standard QSAR does. This feature is also depicted in Figure 4 from where it 

is also noted that both correlation factors tend to approach each other near the ideal correlation factor, 

i.e. in the proximity of 00.1=r .  

Nevertheless, we should note at this point that while a certain model does not satisfy the correlation 

factor criteria for being validated, i.e. 84.0>r , as is the case of the model (Ia) when only 

hydrophobicity is taken into account, this does not mean that the descriptor or chemical domain is less 

relevant; it is merely an indication that this descriptor may be further considered in a multivariate 

combination with others until produce better model.  

Indeed, both within standard QSAR and S-SAR approaches all models except (Ia) are characterized 

by relevant statistics.          
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Figure 4. Norm correlation spectral space of the statistical and algebraic correlation factors against the 
spectral norm of the predicted S-SAR models of Table 6, respectively. 

Table 7. Synopsis of the statistic and algebraic values of paths connecting the S-SAR models of Table 

5 in the norm-correlation spectral-space of Figure 4.   

Value 
Path 

Statistic  Algebraic 

Ia-IIa-III 2.61485 2.61132 

Ia-IIb-III 2.61485 2.61132 

Ia-IIc-III 2.61485 2.61132 

Ib-IIa-III 0.220072 0.219855 

Ib-IIb-III 0.220072 0.219855 

Ib-IIc-III 0.220072 0.219855 

Ic-IIa-III 0.389359 0.388969 

Ic-IIb-III 0.389359 0.388969 

Ic-IIc-III 0.389359 0.388969 
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Figure 5. Spectral-structural models, designed through the rules of minimal spectral-SAR paths of 
Table 7, emphasizing the primary, secondary and tertiary hierarchies forward the endpoints of the 

Tetrahymena pyriformis eco-toxicological activity according with data of Table 3, S-SAR equations of 
Table 5, and of the associated spectral norms computed upon Eq. (30). 

 

 

Next, aiming to see whether the obtained models can provide us a mechanistic model of chemical-

biological interaction of tested xenobiotics on T. pyriformis species, the introduced spectral norm is 

employed in conjunction with algebraic or statistic correlation factors to compute the spectral paths 

between these models. Such an endeavor may lead to an intra-species analysis of models and form the 

first step for designing of integrated test batteries (or an expert system) at the inter-species level of 

ecotoxicology.  

 In this respect, Table 7 presents the computed spectral distance between the models of the 

measured Log(1/IGC50) endpoint of Table 3 though considering all path combinations that contain a 

single model for each class, with one and two descriptors, towards the closest model, i.e. (III ), with 

respect to the ideal one. It follows that the paths are grouped according to the intermediary passing 

model while extreme models (initial and final) are kept fixed. Such ordered paths can be rationalized 

since a selection criterion is further introduced. Since paths are involved, one may learn from the well-

established principle of nature according to which the events are linked by closest paths (in all classical 

and quantum spaces).  

Therefore, we may formulate the S-SAR least path principle as follows: the hierarchy of models is 

driven by the minimum distance between endpoints (predicted norm of activities) of different classes 

of descriptors and of their combinations; whenever multiple minimum paths are possible, that principle 
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applies iteratively downwards between individual intermediate models of paths, starting with that one 

with minimal spectral norm.   

In our case, according to the enounced minimum spectral path rule, the diagram of Figure 5 is 

constructed. It emphasizes different mechanistic hierarchies of the T. pyriformis toxicophores. It comes 

out that, for instance, while three minimum paths result from Table 7, namely Ib-IIa-III , Ib-IIb-III , and 

Ib-IIc-III , only one is selected as giving the primary hierarchy, Ib-IIa-III , based on the fact that the 

spectral norm of IIa is the closest one to Ib. This is a purely mechanistic result since the correlation 

order in Table 6 would require that IIc be the next model chosen when starting from model Ib. At this 

point, we see that what is ordered from a statistical point of view may be degenerate in path length 

between the spectral norms. Therefore it appears that statistics might not be the most adequate criterion 

for SAR validity, since models with different correlations factors may be equally inter-related through 

spectral norms. Used exclusively, the statistic criteria will give little information about the subsidiary 

inter-species correlations in a unitary picture. On the contrary, the spectral path rule is able to formulate 

a scheme of connected paths between the models employing the natural principle of minimal action. 

Minimal action here means that minimal length between spectral norms of different categories of 

endpoints is more favorable and comes firstly into a process driven by the succession of activities. 

Thus, once the path Ib-IIa-III  is naturally selected as the primary hierarchy of the ecotoxicity 

mechanism of T. pyriformis, one can expect that, in this interpretation of the minimum spectral paths, 

the envisioned sequence of actions towards the measured one can be causally modeled as the action of 

polarizability followed by that of hydrophobicity and finally by that of total energy, through the 

optimization of molecular geometry during the chemical-biological interactions involved. This picture 

tells that the covalent interaction is the most dominant one, in this case, and drives the approach 

between the xenobiotics and the cells of organism; then enters into action the transfer through cellular 

membrane and finally the stabilization being assured by the stereo-specificity of the compounds linked 

to the receptor site. This way, a molecular mechanism may be coherently formulated in terms of norms 

of actions and of their inter-distances.       

Whenever the primary route is inhibited, the second hierarchy of action follows by excluding the 

models previously involved and based on the same least principle of action. The second initial model 

will be chose that which is nearest to the first one on the spectral norm scale. Then, from all equivalent 

paths the next step is made toward the closes neighbor in the spectral norm sense.  

The second hierarchy results along the endpoints path Ic-IIb-III , see Figure 5. This tells us that, by 

some subsidiary, slower action, the stereo-specificity selection is the first stage of the chemical-

biological interaction analyzed, followed by membrane transport and only then by the stabilization of 

chemical bonds through polarizability.                                  

If the secondary route is somehow repressed, as well the third way of ecotoxicological action of T. 

pyriformis is also revealed as in Figure 5, Ia-IIc-III , again on the minimal activity action grounds 

constructed.    

It is not surprising that the application of minimal action principles on the spectral activity norms 

furnished many, however ordered, ways in which chemical-biological interaction are present in nature. 

This is in accordance with the heuristically truth that the Nature reserves the privilege to develop many 

paths to achieve an action. The present S-SAR approach gives these new possibilities of hierarchically 



Int. J. Mol. Sci. 2007, 8                                                                                                                         385 
 

 

modelling of activities, in a way that the statistical analysis appears to be limited to single choices. 

Nevertheless, further work has to be performed by employing S-SAR method and of its minimal 

spectral path principle on many species and class of compounds in order to better validate the present 

results and algorithm.      

4. Conclusions 

Aiming to solve part of the many challenges posed by QSAR and its applications, with a view to 

generating a mechanistic-causal vision of the data recorded (measured or computed), the current paper 

introduces both a new analytical SAR modelling algorithm (the so-called Spectral-SAR method) and 

its associated minimum spectral action principle, following the activity norm of the models generated.  

As such, four possible branches of a QSAR expertise were identified, namely those based on the so 

called classical (of Hansch type), 3-dimensional (of CoMFA or MTD type), decisional (of genetic 

algorithm type) and orthogonal (of PCA type) – all proposing to furnish an appropriate analytical 

model for structure-chemical property or biological activity correlations. In this context the 

orthogonality problem was especially addressed, though the considered descriptors have to be as little 

collinear as possible in order to eliminate redundancies. Despite the fact that many QSAR approaches 

make use of algorithms that separate or transform initial non-orthogonal data into an orthogonal space, 

in search of a better correlation, many of them provide no significant improvement over the standard 

QSAR least square recipe. Instead, the present endeavor puts forth the orthogonal space (in Gram-

Schmidt sense) only as an intermediate one in order to obtain from it the spectral expansion of 

concerned activity and descriptors like vectors in a high dimensional space. This way, through more 

algebraic transparent transformations the spectral structure-activity relationships (S-SAR) are 

formulated as viable alternative to the previous standard QSAR method. The actual S-SAR approach 

also provides the framework in which the spectral norm can be formulated as assigning a single 

number to any SAR problem with the meaning of encoded of all information of a model, including the 

statistics. However, the spectral norm permits the spectral formulation of the minimal action principle 

applicable among various tested models. As such, the ecotoxicology of the Tetrahymena pyriformis 

was studied in detail providing the hierarchical paths of molecular actions towards the recorded 

activity. Since all consecrated criteria of a valid SAR analysis to an ecotoxicology study were included, 

the present added principle, in terms of minimum path over spectral norms of possible models for a 

certain set of data, unfolds the perspective of a real mechanistic interpretation of the chemical-

biological interaction based on QSAR equation. Nevertheless, further inter-species studies as well as 

the time-version of the least spectral norm principle have to be undertaken in order to better reveal the 

features and advantages of the present S-SAR method.  
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