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Abstract: A novel quantitative structure-activity (propertglationship model, namely

Spectral-SAR, is presented in an exclusive algebveay replacing the old-fashioned

multi-regression one. The actual S-SAR method pmégs structural descriptors as vectors
in a generic data space that is further mappedairitdl orthogonal space by means of the
Gram-Schmidt algorithm. Then, by coordinated tramehtion between the data and
orthogonal spaces, the S-SAR equation is given rusaeple determinant form for any

chemical-biological interactions under study. Whaleving to give the same analytical

equation and correlation results with standard ivartate statistics, the actual S-SAR
frame allows the introduction of the spectral n@asia valid substitute for the correlation
factor, while also having the advantage to dedignviarious related SAR models through
the introduced “minimal spectral path” rule. An &pation is given performing a complete

S-SAR analysis upon th&etrahymena pyriformigiliate species employing its reported
eco-toxicity activities among relevant classes efobiotics. By representing the spectral
norm of the endpoint models against the concermedttaral coordinates, the obtained
S-SAR endpoints hierarchy scheme opens the pergpeid further design the eco-

toxicological test batteries with organisms frorffetent species.

Keywords. Multivariate correlations, Gram-Schmidt algorithi{enobiotics, Tetrahymena
pyriformis
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1. Introduction

In Chemistry, the first systematic correlations eofrom Lavoisier's law of conservation of mass
and energy, followed by the Dalton conception afictural matter. Nevertheless, Mendeleyev was the
first one to place the structure-activity relatibips (SARS) in the centre of chemistry with hisiois
of the periodic table [1]. However, with the advehgguantum theory, the relations among elements of
periods and down groups periodic table acquired in-depth quantitativeamag, by relating the
elementary electronic structure with the manifeséédmic reactivity through, for instance, basic
electronegativity and chemical hardness indice8][2This way, it appears that every aspect of
chemical reactivity can be seen as a certain m&taiien of the structure-property pair that is

quantified since the derivation of the associatpthéon [4].
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Figure 1. Generic world of the quantitative structure-adyifgroperty relationships - QSA(P)R -
through classical, 3D, decisional and orthogonahwas of multivariate analysis of the chemical-
biological interactions. In scheme MSD-MTD, CoMFR#d PCA stand for the “minimal steric
difference-minimal topological difference”, “comadive molecular field analysis” and “principal
component analysis”, respectively.

Yet, the current problem of science is to organiehuge amount of experimental information in
comprehensive equations with a predictive value.ttA$ point, the quantitative structure-activity
relationships (QSARS) methods seem to offer the keg for unifying the chemical and biological
interaction into a single in vivo-in vitro contgit10].
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However, although the main purpose of QSARs studiesdl about finding structural parameters
that best correlate with the activity/property bé tinteractions observed, a multitude of methods of
attaining this goal have appeared. They struggldentify the most appropriate manner of quantiyin
the causes in such a way that they may be refleotéde measurement with maximal accuracy or
minimal error. Phenomenologically, these methods ba conceptually grouped into “classical”
[11-19], “3-dimensional” [20-30], “decisional’ [342], and “orthogonal” ones [43-57], together
represented as in Figure 1.

In short, classic QSAR approaches assume as dessripe structural indices that directly reflect
the electronic structures of the tested chemicalpmunds. As such, they assume that the biological
activity depends on factors describing the lipopityl (e.g. LogP, surfaces), electronic effectgy(e.
Hammett constants, polarization, localization adirges), and steric effects (e.g. Taft indices, &gl
indices, topological indices, molecular mass, tetargy at optimized molecular geometry) [12, 13].

A step forward is made when 3-dimensional strustumee characterized by entry indices. For
instance, the MTD (minimal topological differen¢23-25] and CoMFA (comparative molecular field
analysis) [26, 27] methods are closely take intmaat the bioactive conformation of the receptoe, t
topology of the ligand series as well as theiristi#r, in accordance with the “key-into-lock” peiple,
while the topographical schemes [29,30] make usehef graph representation of the chemical
compounds, replacing in the associated connectindirices the optimized stereochemical indices. A
visible increase in the structure-activity corrigatis usually recorded when these methods are used
[28].

Still, statistically, it was found that in order rfonultiple linear regressions to be used, the
requirement of a large number of compounds hasetomiet in order to explore the structural
combination. Under these circumstances, the neX@R3Sategory in Figure 1, namely the decisional
one appears as further natural approach. Basidhidy are heuristic methods of classifying data,
developing genetic algorithms, i.e. neural netwdf32], fuzzy methodologies [34,35], or support
vector machine for learning [36-42], in order tadioptimal solutions for combinatorial problems.
They offer the advantage of providing a quick eation regarding the quality of correlation we siabul
expect from the data and furnishing several begtession models to decide upon. Moreover, the
decisional analysis can be made in high-dimensi@palce always giving a solution by standard
algorithm.

Nevertheless, despite having several solutiongtidé over thousands of products from millions of
libraries, together with hundred descriptors, tbpens the problem of their further relevance and
classification. With these we have arrived at tkarhof a QSAR analysis: the orthogonal problem.
Statistically, this term was interpreted as desargowhose values form a basis set that pose ilitide-
correlation factors. In practice, data reductiorhteques such as PCA (principal component analysis)
[43,45] describe biological activity or chemicaloperties through a fewer number of independent
(orthogonal) descriptors giving a regression egmatin these principal components. Unfortunately,
even combined with PLS (partial least squares)sevasidation technique to produce higher predictive
QSAR models, the main drawback still remains sitihegy furnish scarce possibility to interpret the
obtained models [44,46].
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Another way of interpreting orthogonality was givdmrough producing an orthogonal space by
transforming the original basis set of descriptaran orthogonal one by searching of inter-regoessi
equations between them [47], followed, eventudlytheir reciprocal subtractions [48]. Unfortungtel
this method was found to give in almost all casesgame correlation and statistical factors asethos
furnished by regressions with original basis setlegcriptors [49-54], moreover, producing a QSAR
equation in the orthogonal space where the orthalgdescriptors have little interpretation agait t
real ones. At the end, the orthogonal descriptmrsthod becomes another technique for selecting the
independent predictor variables (like PCA) rathemt one that provides alternative solution for dasi
SAR problem [55].

Under these circumstances, the third attempt efrpnéting the orthogonal problem is considering
the scalar product as the main vehicle in releagiegQSAR solution in a completely algebraic way
thus furnishing the so called Spectral-SAR (S-SA&hnique in Figure 1 for reasons revealed bellow.
It is based on the employment of the generalizedi@ian scalar product rule among the vectors
associated to the descriptors’ data in a way thatlyce, thought the Gram-Schmidt algorithm and
coordinate transformation, precisely the same teswl the statistical multi linear regression téegpines
do. This new QSAR method, initiated in a relatividhgited dissemination space [56,57], is presented
in full here, while also giving its equivalence kithe standard multiple linear regression method.
Nevertheless, the features of the present S-SARadenclude some of its predecessor's, including
vectorial frame and output, high-dimensionality fitre data space, adaptive analysis, showing,
however, independence concerning the order of gathal vectors and also proving the spectral norm
as an alternative algebraic tool for substitutihthe statistical correlation factor.

The field of ecotoxicology was chosen as an apfinawhere various combined S-SAR-Hansch
models are constructed for describing the toxioity26 xenobiotics on th&etrahymena pyriformis
species. It follows that S-SAR approach gives thecsic algebraic tool, i.e. the spectral norm,hwit
which the specific ecotoxicologicahdpointconcept acquires new feasible degree. The pr&&AR
analysis leaves room for other similar studies wihénjoined with other classical, 3-dimensionatia
decisional QSAR techniques of Figure 1 so contiiiguto unite the chemical-biological interactions i
a veritable QSAR science.

2. The Spectral-SAR Method
2.1. Background Concepts

The basic problem of structure-activity relatiogshnalysis can be formulated as follows: given a
set of measured activities of a certain seriessaf ) compounds, the optimal correlation between
these activities and the structural (internal,imsic) properties of the compounds ($4yproperties) is
sought, according to Table 1, in the form of theegal multi-linear equation:

y=by +bx +...+b.x +...+b, x, +e. 1)

In equation (1)y represents the generic activity in relation with abitrary set of independent
variablesx;, i=1, ..., M through the fixed parametels j=0, ..., M, while e stands as the residual or
error value between the assumed multi-linear maddimeasurements.
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Therefore, the SAR problem becomes quantitativeesihe set of fixed parameters is determined so
that the errors in activity evaluation are minintiz& his way, the equation (1) may be used to ptedic
the activity (without experimental measurement)dach further input of the structural parameters.

Table 1. Synopsis of the basic SAR descriptors.

Activity Structural predictor variables
Y1 X11 s X1k e X1m
Y2 X21 s Kok e Xom
YN X1 e XNk e XNM

However, this "Holy Grail" property of a QSAR equat opens the issue of significance and
statistical relevance of the values consideredabld 1, as well as that of the computational method
which the parameters of (1) are assessed.

Usually, the QSAR problem is solved in the so chlleormal or "standard" way, briefly described
in what follows. Firstly, the equation (1) is pattiarized for each activity entry of Table 1 thus
generating th&lx(M+ 1) system:

Y1 =0 + b, o+ B Xy H Dy Xy e
Yo = by +BXp oA B X+t Dy Xy T, @
Yn =B + B X+ A DX by Xy ey
Note that, generally, each activity evaluationgsuaned to be accompanied by a different errorthee.
valuesey, ..., ey are potentially different although the ideal cagrild demand that they be equal with
zero.
However, since the following matrices are introdiice

by
Y1 & b, 1 X3 X - Xy
y e, 1 Xy Xpp -+ X
Y= LES ) By Xo=)EE 3)
YN en b 1 Xng Xnz o X
M
the system (2) can be rewritten in a simple algelway:
Y=XB+E. 4)

Hence, the minimization of the error veckbequals the minimization of the vectdf-KB) in (4).
Put in vectorial terms, the solution of the supiraahsional system (2) is a vectg(B) which

minimizes the Euclidian norm of the residual (ernggctor, in a least square sense:
@B) = (Y - xB)" (Y - XB) -~ min. (5)
Finally, one uses the following theorem [58-6if]the vector B of (3) is the solution of the linea
system (6),
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XT(Y - xB)=0, (6)
where X is a real matrix of dimension Nx(Mltand B a vector of dimension (Myx1, then the
standard deviation of XB with respect to Y is malime. the condition (5) is fulfilled.

This means that we can considerm(E) -  wBen relations (4) and (6) are combined to giwe th

B vector of estimates
B=(XTx) XY, (7)

It is worth noting that while solution (7) solvelsetabove QSAR problem in a formal way the
concrete application of this method requires a lagmputational effort even when the symmetry of
the matrixX"X is taken into account.

Despite this, the “normal” or “standard” QSAR prdaee is already implemented in various
software packages nowadays. It is worth explorinigeio alternative way that may serve both
conceptual and computational advantages. The sdcapectral” algorithm, presented below, stands

as such a new perspective, belonging to “orthogQ&AR” methods of Figure 1.
2.2. Spectral-SAR Algorithm

The key concept in SAR discussion regards the im@gnce of the considered structural
parameters in Table 1. As a consequence we maefuemploy this feature to quantify the basic SAR
through an orthogonal space.

The idea is to transform the columns of structdedh of Table 1 into an abstract orthogonal space,
where necessarily all predictor variables are iedeent, see Figure 2; solve the SAR problem there
and then referring the result to the initial dagareans of a coordinate transformation.

The analytical procedure is unfolded in simple stps.
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Figure 2. Generic mapping of data space containing the r/iad:tmts{jx>,|0>} into orthogonal basis
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Basically, Table 1 is reconsidered under the fofmTable 2 where, for completeness, the unity
column has been addéd,)=[1 1 ... 1) for accounting of the coefficients of the freentef) of

system (2).

Table 2. The spectral (vectorial) version of SAR descriptof Table 1.

Activity Structural predictor variables
|Y> |X0> |X1> |Xk> |X|v|>
Y1 1 X11 e X1k s X1m
Yo 1 Xo1 e Xok s Xom
YN 1 XN1 XNk v XNM

Moreover, since the columns are now consideredeators in data space we are looking for the
“spectral” decomposition of the activity vecth) upon the considered basis of the structural

vectors{| Xo )| X0)seee] Xihseons | Xy >}
1Y) =lg| Xo) + | Xy) +...4 B | X, ) +...4 by [ Xy ) +]e). (8)
Equation (8) stands, in fact, as a spectral decsimipo counterpart of the multi-linear equation, (1)
equation that the name of the present approachstnoma.
The next step is to construct a vectorial algorigothat the residual vect[:E> can be sent to zero

in (8) in order to fulfill the above (5) conditiaf minimizing of errors.
To achieve the minimal errors in (8) the transfdiora of the data basis

{|X0>,|Xl>,...,|Xk>,...,|XM>} into an orthogonal one, saﬂ,&)o>,‘Ql>,...,‘Qk>,...,‘QM>}, is now

considered. In this respect the consecrated Grammidlt procedure is employed. It is worth noting
that this procedure is well known in quantum chémigshen searching for an orthogonal basis for an
orthogonal basis set in atomic and molecular wawnetfon spectral decomposition [62].

However, before applying it effectively one has itdroduce the generalized scalar product
throughout the basic rule:

N
<Wl|wk>:;‘/’nwik :<LIJk|LPI> (9)
i
giving out a real number from two arbitradydimensional vectors
W)=y a o W) V) T W Y W)

Briefly, remember that the orthogonal conditionuiegs that the scalar product of type (9) to be
zero, the orthogonal basiﬁsQOMQl>,...,‘Qk>,...,‘QM >} can be constructed from the set

{| Xo )| X0)seee] Xihreonr | Xy >} according with the iterative recipe:
I. Choose
Q) =] Xo): (10)
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ii. Then, by picking ‘ X1> as the next vector to be transformed, one care \wrét:

X.|Q
‘Ql>:|xl>_r(}‘90>’ rc}:% (11)
SO that<Qo‘Ql> =0 assuring so far th+§20> and‘§21> are orthogonal.
iii. Next, repeating steps i. and ii. above unﬂﬂetvectors‘§20>, ‘Ql>, ‘Qk_1> are
orthogonally constructed , we can, for instancghtr transform the vect<#|xk> into :
. X, Q.
‘Qk>:|xk>_:§rik‘gi>’ rik:% (12)

so that the vecto*Qk> is orthogonal on all previous ones.
iv. Step (iii) is repeated and extended until t& brthogonal predictor vectbh,\,, > is obtained.

Therefore, grounded on the Gram-Schmidt recipe #tarting predictor vectorial basis
{|X0>,|X1>,...,|Xk>,...,|XM>} is replaced with the orthogonal o;d@OMQl>,...,‘Qk>,...,‘QM>} by

appropriately subtracting from the original vecttre non-wished non-orthogonal contributions. Note
that the above procedure holds for any arbitradgioof original vectors to be orthogonalized.
Within the constructed orthogonal space, the vecaotivity |Y> achieves true spectral

decomposition form:
|Y>:a)O‘QO>+a)l‘Ql>+"'+a)k‘Qk>+"'+a)M‘QM>' (13)
Note that the residual vector in equation (8) heamgpeared in (13) since it has no structural

meaning in the abstracted orthogonal basis. Garedtively, one can say that in the abstract odhab
space the residual vecth}} was identified with the vector with all componeratso| 0,0,...,O> that is

always perpendicular with all other vectors of ogbnal basis.

This way, the Gram-Schmidt algorithm, by its specidrthogonal recursive rules, absorbs or
transforms the minimization condition of errors(8) to simple identification with the origin of the
orthogonal space of data.

At this point, since there is no residual vectana@ing in (13) one can consider that the SAR
problem is in principle solved once the new coédfits in (13) (,, &, ,....4 ...,y ) are determined.

These new coefficients can be immediately deduceskd on the orthogonal peculiarities of the
spectral decomposition (13) grounded on the faadt th

(@@ )=0, k21, (14)
a condition assured by the very nature of the yedtom the constructed orthogonal basis.

As such, each coefficient comes out as the scatatupt of its specific predictor vector with the
activity vector (13) is performed:

) o
a)k—m,k—O,M. (15)
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With coefficients given by expressions of type (% spectral expansion of the activity vector into
an orthogonal basis (13) is completed. Yet, thissdoot mean that we have found the coefficients tha
directly link the activity with the predictor vectoas equation (8) demands.

However, this goal is easily achieved through timalfstage of the present SAR algorithm. It
consists in going back from the orthogonal to thigal basis of data through the system of coordina
transformations:

lY) = a)O‘QO>+ a)l‘Ql>+...+ cq(‘Qk>+...+ wM‘QM>
[Xo)= 10Qq) + 000, )+...+ 000, )+...+ 000, )

[X,)= 13|Q) + 100, )+..+ 00Q)+..+ 000,,)
................................................................................ (16)

While the first equation of (16) reproduces therengpectral decomposition (13), the rest of them
are convenient rewritings of the Gram-Schmidt tramsations (10)-(12).

Finally, the system (16) is algebraically true fdaonly if the associated augmented determinant
disappears,

V)o@ @ e oa e
|x0> 1 0 - 0 - 0
X)) g 1 0 - 0
: S ; =0, (17)
X ) re 1 0
|XM> rOM rlM rkM 1

this being the condition consecrated by the theaeoording to whicla system possessing a column
as a linear combination of all others has a zelleed determinan{58].

It is worth noting that the minimization of resid@arors was unnecessarily complicated in previous
orthogonalization approaches [54] by involving si@m multi-linear regressions, iteratively, among
the selected structural descriptors and of themhkgoation [53]. This way, the flavor of performiag
alternative orthogonal approach of the SAR issues Wast in an ocean of inter-correlations.
Consequently, the heuristic methods used in theclsear an orthogonal set of descriptors, in the
regression sense, though an arbitrarily minimaérieorrelation factors, leave both the realistic
meaning of the usually lesser set of orthogonaltestriptors, as compared with the original ond, an
the initial SAR problem to be solved. On the comtravithin the present orthogonal endeavor, the
Spectral-SAR method proposes a new way of completelving of a SAR problem linking the
measured activities (or observed properties) whid s$tructural descriptors in a simpler and more
transparent algebraic way than the “standard” nhinkiar regression method do.
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Moreover, the ordering problem in all previous ogbnal descriptors’ methods [54] is eliminated
with the present S-SAR analysis since all struttdescriptors are spectrally expanded at once
complying with the orthogonal basis, as Eq. (16)eats, avoiding iterative reciprocal correlations
among orthogonal descriptors where their considerddr becomes essential. This special feature of
S-SAR will be illustrated later, in the applicatisection.

It is now clear that once expanded, observingiits €olumn, the determinant (17) generates the
searched full solution of the basic SAR problenTable 2 with minimization of errors included and
independent of the orthogonalization order. Rentadykaapart from being conceptually new through
considering the spectral (orthogonal) expansiontred input data space (of both activity and
descriptors) through the system (16), the presethod also has the computational advantage of being
simpler than the classical “standard” way of treguSAR problem previously exposed. That because,
one has nothing to do with computations of matfithe coefficients (7), this being a quite involgin
and time consuming procedure. Instead, one cae diiectly the spectral-SAR solution (equation) as
the expansion of af+2)-dimensional determinant of type (17) whose congmts are the activity and
structural vectors among the Gram-Schmidt and feetsal decomposition coefficients, and

respectively.

However, although different from the mathematicedgedure, both standard- and spectral-SAR
give similar results due to the theorem that stthes [61]: if the matrix X as that from (3)with
dimension Nx(M4), N>M+1, has linear independent columnise. they are orthogonal as in the
spectral approacltthen there exists an unique matrix Q of dimensioffMy 1) with orthogonal
columns and a triangular matrix R of dimension (M+{M+ 1) with the elements of the principal
diagonal equal with las identified in the first small determinant &V}, so that the matrix X can be
factorized as

X=QR (18)

When combining equation (18) with the optimal etquai6) one can get, after straight algebraic

rules, that thé® vector of estimates takes the form

B=(Q"Q) "y, (19)
in close agreement with previous normal one, semtean (7). However, by comparison of matrices
X"™X andQ'Q in equations (7) and (19), respectively, therelésr that the last case certainly furnishes
a diagonal form which for sure is easier to harfidée to take its inverse) when searching for thetor
B of SAR coefficients.

With these considerations one would prefer thegmeSpectral-SAR approach when solving the
QSAR problems in chemistry and related moleculeild§. Nevertheless, wishing to also provide a
practical advantage of the exposed Spectral-SARMeh a specific application, with relevance in
ecotoxicological studies, is presented in the sextion.

3. Application to Ecotoxicology
3.1 Basic Characteristics of QSAR in Ecotoxicology

From more than one decade the European Unionutsetis, e.g. Organization for Economic Co-
operation and Development (OECD) through its Regjisin, Evaluation, and Authorization of
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Chemicals (REACH) management system [63, 64], thated States Environmental Protection
Agency (EPA) as part of the premanufactory notifara assessment, as well as the World Health
Organization have been developing impressive progran the regulatory assessment of chemical
safety by using of the QSAR data bases and ofdsbheciated automated expert systems [65-73]. This
because, with the tones of chemicals that force thay onto the market each year and due to their
commercial and industrial disposal into the envinent, it becomes of first importance to predicirthe
toxicological activities from the molecular struauin order to properly design the risk assessment
measures [67-77].

Nevertheless, in order to best accomplish such &, dgmth a conceptual and a computational
strategy need to be adopted. As such, while, &tairce, a certain set of parameters has beenfiddnti
for environmental studies, i.e. bioaccumulationgroical degradation (aqueous and gas phase),
biodegradation, soil sorption, and ecotoxicity, twmjor aspects have been identified for QSAR
analyses, namely the quality and the chemical dowigihe QSAR [69,71,72].

Concerning the parameters to be evaluated, theyamaadytically transposed into the so called
endpointsrepresenting specific experimental and measurequemtities giving information about the
environmental risk degree. They are thus identifisidh the QSAR activities (biophores or
toxicophores) to be correlated and are usually esqad as log-based continuous toxicological data
(e.g. median lethal concentration44C 50% effect concentration-§ 50% grow inhibition
concentration-1Ggy) [74-77].

On the other hand, a useful QSAR model has tofgatection criteria in order to be validated.

From the statistical point of view the ratio of @giints to the number of variables should be hlighe
or equal to 5 (the so called Topliss-Costello {dl) and to provide a correlation factor 084.

As descriptors, those directly related to molecgkancture of chemical are preferable. It is worth
noting here that the quantum chemical parameteve lam advantage against those of topological
nature; still the quantum parameters to be useddbs relatively easily obtainable, for instanicese
based on ground state or valence state propertie®ropounds are preferable to those based on
transition-state calculations [10].

If descriptors are taken from experiments, the drpental conditions must be specified.
Nevertheless, the best models predicting ecotdfécts have to be mechanistic interpretable, though
that structure-activity correlation permits reconstion or prediction of the basic phenomena thket
place at the molecular level.

Regarding the outliers they have to be treated weatltion, as they are not necessarily outsideef th
chemical domain but depending on the QSAR model ¢if the correlated descriptors) employed [79].
Moreover, the atypical data (presumed outliers) mgyresent compounds acting by a different
mechanism, inducing an inhibition or belonging tesdmilar chemical structure. However, they should
not be excluded from an analysis unless relevaetrative QSAR models were constructed. With this
issue, we arrive at the chemical domain problenatothe representative set of compounds for the
QSAR analysis.

Based on previous criteria in order for a QSAR wsialto be well conducted, a compromise
between breath (variety) and depth (representgbitiharacteristics through the existing chemicals
within that domain have to be considered.
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This way, the two-fold process of dissimilarity-dasimilarity- based selection is achieved [10]. The
motivation for this criteria is that, while similaompounds (usually based on substitutions) asslees
basic congenericity QSAR condition, consideringsdnilar chemicals can predict how (however
subtle) alterations in molecular structure can leEadhanges in the mechanism of toxicity action and
potency in the tested series of compounds. In shbid condition can be regarded as structural
heterogeneity of compounds.

After all, it is widely recognized that ecotoxicitgction is a multivariate process involving
xenobiotics leading with immediate and long-termfeets due o various transformations products.
Therefore, a QSAR approach may provide informatibthe bio-up-take (i.e. of key process) through
the selected descriptors that can be integratad expert system of toxic prediction.

However, with a view to designing an ecotoxicol@yimechanistic battery for different species on
QSAR grounds, the first stage of unicellular orgamievel is undertaken here.

3.2 Bio-ecological Issues of Unicellular Organisms

We often think of unicellular organisms as havingjraple, primitive structure. This is definitely an
erroneous view when applied to the ciliates; they grobably the most complex of all unicellular
organisms.

Unlike multicellular organisms, which have cellsesjlized for performing the various body
functions, single-celled organisms must performtladise functions with a single cell, and so their
structure may be much more complex than the célerger organisms.

Movement, sensitivity to the environment, water apak, and food capture must all be
accomplished with the machinery in a single ceDd,fda-d]. As protozoans these organisms are
classified according to their means of locomotioycilia (Ciliophora), flagella Sarcomastigophona
or pseudopodiaRhizopod§ while non-motile protists are classified as sgoans in the phylum
Apicomplexa

Many of these single-celled organisms feed by dirgubmaller organisms directly into temporary
intracellular vacuoles. These food vacuoles caiauln a characteristic manner within the cellslevhi
enzymes are secreted into them for digestion [81b].

However, form the taxonomy points of view they atassified downwards, from kingdom to
species asProtista > Ciliophora > Cyrtophora > Oligohymenophtea > Hymenostomatia >
Hymenostomatida > Tetrahymeni > Tetrahymenidae tralymeng81c].

However, it is worth restricting the discussionctiiates only since they include about 7500 known
species of some of the most complex single-cellgdrdsms ever, as well as some of the largest free-
living protists; a few genera may reach two millters in length, and are abundant in almost every
environment with liquid water: ocean waters, marssgliments, lakes, ponds, and rivers, and even
soils. Because individual ciliate species vary tiyaa their tolerance of pollution, the ciliatesund in
a body of water can be used to gauge the degneellotion quickly.

More specifically, ciliates are classified on theasis of cilia arrangement, position, and
ultrastructure. Such work now involves electron nmécopy and comparative molecular biology to
estimate relationships.
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In the most recent classification of ciliates, treup is divided into eight classe8rostomatea
Benthic and Karyorelictida Benthic(mostly in marine forms)l.itostomatea(including Balantidium
and Didinium), Spirotrichea (including Stentor Stylonychia and tintinnids), Phyllopharyngea
(including suctorians),Nassophorea(including Parameciumand Euplote$, Oligohymenophorea
(including Tetrahymena, VorticellandColpidiun), and Colpodea (includingolpodg [81a].

Nevertheless, most frequently studied unicellula@yanisms through QSAR toxicological analysis
are from the Tetrahymena genus of ciliated protozda species of the genus Tetrahymena are
morphologically very similar; they display multipleuclei: a diploid micronucleus found only in
conjugating strains and a polyploid macronucleuss@nt in all strains, which is the site of gene
expression during vegetative growth, see Figui@2333].

Tetrahymenaspecies are very common in aquatic habitats anchanepathogenic, have a short
generation time and can be grown to high cell dgmsiinexpensive media [81d]. As such, ecological,
morphological, biochemical, and molecular featuh@se been used over the years in attempts to
classify them.

Figure 3. lllustration of the oral region dfetrahymena pyriformiduring ingestion as taken by
electron micrograph technique [83].

The earliest classifications were based on morghcdéd and ecological data. At this level the
presence or absence of a caudal cilium was regaadedn important character. Later, three
morphological species complexes were distinguishéte pyriformis complex with smaller,
bacterivorous species and less somatic kinetics; ribstrata complex with larger parasitic or
histophagous species, more somatic kinetics, aadatility to form resting cysts; and the patula
complex with species that undergo microstome-magnos transformation. Within the complexes,
particularly the pyriformis complex, species arestidiguishable by their mating capacity and/or
isozyme patterns. Finally, another approach basethe degree of parasitism was suggested. Since,
the Tetrahymenaspecies are free-living, as well as facultativd abligate parasites, it was suggested
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an evolutionary lineage from free-living speciesnsideringTetrahymena pyriformiso be the basal
species, to facultative parasites, and then t@atdiparasites [80,81a,82,84].

Accordingly, Tetrahymena pyriformjsa teardrop-shaped, unicellular, ciliated freslavairotozoan
about 50 um long, is found as the best candidatese/kecotoxicological activity is considered through
the present S-SAR toward establishing a mechaallticoherent view of a certain class of
xenobiotics on inter-correlated species.

3.3 Spectral-SAR Ecotoxicity of Tetrahymena pymiier

Quite often, despite the tendency to submit a latgss of descriptors to a QSAR analysis, this is
not the best strategy [69], at least in ecotoxigplaand whenever a specific mode of action or the
elucidation of the causal mechanistically schenmenigsaged.

More focused studies in ecotoxicology, and esplgciggardingT. pyriformis have found that
hydrophobicity LogP) and electrophilicity E ymo) phenomena plays a particular place in explaining
the ecotoxicology of the species.

While hydrophobicity describes the penetration powé the xenobiotics though biological
membranes, the other descriptors to be considegfldct the electronic and specific interaction
between the ligand and target site of receptor.

Moreover, it was convincingly argued that the dleelsHammett constant can be successfully
rationalized by a pure structural index as the gnef the lowest unoccupied molecular orbital
(LUMO) is [79]. These facts open the attractive perspectf considering the ecotoxicological studies
through employing the Hansch-type structure-agtiekpansion:

hydrophobttJ (electronic} ( steric j
. +b, : +b, : ,
descriptor descriptor descriptor

A=D, + bl( (20)
thus also providing enough information from trangpelectronic affinity and specific interaction at
the molecular level, respectively.

However, in the present study, besides considdrogP as compulsory descriptor the molecular
polarizability POL) will be considered for modelling the electronftiraty for its inherent definition
that implies the radius of the electrostatic splodrelectrostatic interaction. This way, the fissage of
binding, through the radius of interaction, is acted [85].

Then, the steric descriptor is chosen here, fopkaity, as the total molecular enerdyr6y) in its
ground state, for the reason that it is calculaethe optimum molecular geometry where the stereo-
specificity is included.

Under these circumstances the ecotoxic activityTatrahymena pyriformjsdetermined in a
population growth impairment assay with a 40 histaesign and population density measured
spectrophotometrically as the endpoé_og (1/1GGs) [86-90], from a series of xenobiotics of which
majority are of phenol type is in Table 3 consgder

It is worth mentioning that the number of compounsisn relevant ratio with the number of
descriptors used, according with above Topliss-€llastule, and that both chemical variability and
congenericity are fulfilled since most of them eetithe phenolic toxicity.



Int. J. Mol. Sci2007, 8 377

Table 3. The series of the xenobiotics of those toxic atiggiA= Log(1/IGG) were considered [86]
along structural parameteregP, POL (A%, andEror (kcal/mol) as accounting for the hydrophobicity,
electronic (polarizability) and steric (total engig optimized 3D geometry) effects, respectively,
derived with the help of HyperChem program [91].

Compound A |1> Log P POL Eor
He Name Formulae |Y> | X0> | X1> | X2> | X3>
1 methanol CHOH -2.67 1 -0.27 3.25 -11622.9
2 ethanol GHsOH -1.99 1 0.08 5.08 -15215.4
3 butan-1-ol GHyOH -1.43 1 0.94 8.75 -22402.8
4 butanone ¢HO -1.75 1 1.01 8.2 -21751.8
5 pentan-3-one £H,0 -1.46 1 1.64 10.04 -25344.6
6 phenol GHsOH -0.21 1 1.76 11.07 -27003.1
7 aniline GHsNH, -0.23 1 1.26 11.79 -24705.9
8 3-cresol CH-CsH,4-OH -0.06 1 2.23 12.91 -30597.6
9 4-methoxiphenol OH-gH,-O-CH; -0.14 1 1.51 13.54 -37976.3
10 2-hydroxyaniline OH-GH,-NH,, 0.94 1 0.98 12.42 -32095.4
11 Benzaldehyde §1s-CHO -0.2 1 1.72 12.36 -29946.9
12 2-cresol CH-CsH,-OH -0.27 1 2.23 12.91 -30597.2
13 3,4-dimeyhylphenol €H3(CHs),OH 0.12 1 2.7 14.74 -34190.8
14 3-nitrotoluene CHCgH4-NO, 0.05 1 0.94 13.98 -42365.1
15 4-chlorophenol ¢Hs-O-Cl 0.55 1 2.28 13 -35307.6
16 2,4-dinitroaniline GH3(NO,)NH, 0.53 1 -1.75 15.22 -63030.2
17 2-methyl-1-4-naphtoquinone 150, 1.54 1 2.39 20.99 -49768.3
18 1,2-dichlorobenzene &.Cly 0.53 1 3.08 14.29 -36217.2
19 2,4-dinitrophenol eH3(NO,)OH 1.08 1 1.67 14.5 -65318
20 1,4-dinitrobenzene §E1,N,O, 1.3 1 1.95 13.86 -57926.7
21 2.,4-dinitrotoluene Hg(NO,), 0.87 1 2.42 15.7 -61520.7
22 2,6-ditertbutil 4-methyl phenol {eH»s0H 1.8 1 5.48 27.59 -59316.5
23 2,3,5,6-tetrachloroaniline §EsNCl, 1.76 1 3.34 19.5 -57920.2
24 penthaclorophenol CIs0H 2.05 1 -0.54 20.71 -68512.4
25 phenylazophenol £H1oN,O 1.66 1 4.06 22.79 -55488.9

26 pentabromophenol BrsO0H 2.66 1 5.72 24.2 -66151.5
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Table 4. QSAR equations through standard multi-linear ratif Satistica package [92] for all
possible correlation models considered from dafBadile 3.

M odel Variables QSAR Equation r S F
la logP Ala - —0.547836+0.435666P 0.539 1.15 9.834
Ib POL AP = _5 84021+0 21680L 0.908 0.574 112.15
Ic Eror Alc = —2.50233-0.0000Z o7 0.882 0.644  84.015
lla logP, Alla _ —~2.91377-0.08106gP 0.911 0.58 55.930
POL
40.2323P0L
b logP, Allb _ —2.64602+0.22994gP 0.922 0.54 65.339
Eror
—0.00006Erot
llc POL, Al = _5 98407+0 134 0L 0.939 0478  86.503
Eror
—0.00003E+o7
1] logP, Al - ~2.94395+0.06336gP 0.941 0.48 56.598
POL,
+0.1120BOL
Eror
—0.0000&o7

The standard QSAR analysis of data of Table 3 fbpassible models of actions reveals the
multivariate equations displayed in Table 4, togethith their associate statistics:

r= 1—2?
[ sR
*TYN-M -1 (22)

_N-M-1/SQ
FM!N—M a - M (ﬁ_lj (23)

as correlation factor, standard error of estimaie Bisher index, respectively, in terms of the ltota
number of residues, measuring the spreading ofirthet activities with respect ttheir estimated
counterparts,

2
SR Z (Q A PREDICTED) (24)
and the total sum of squares,

sQ=Y (A -4f, (25)
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measuring the dispersion of the measured acti\atiesnd their average:
— 1 N
A=A (26)
i=1

while the number of compounds and descriptors igesl to N = 26 andM = 3, in each endpoint
case, respectively.

Before attempting a mechanistic analysis of thaelteslet us apply the S-SAR techniques to the
same data of Table 3 by using the key (or speatiption-type (17) with the associated determinant
completed with orthogonal and spectral coeffici@ftEqgs. (12) and (15), in each considered model of
ecotoxic action, respectively.

More explicitly, in equations (27)-(29), the spattequations are presented with their determinant
forms that once expanded produce the spectral4#méar dependencies of Table 5.

[Y)™ 0270385 0435669 Y)™ 0268751 -054783
(1a): || X,) 1 0 |=0or||X,) 1 0 =0, (27a)
|X,) 1.87808 1 |Xo) 0.304687 1
IY)” 0270385 0.216598 V)" 00441181 -2.8402
(Ib): || X) 1 0 |=0or|X,) 1 0 (=0, (27b)
|X,) 143612 1 |X,) 00607278 1
Y) 0270385 -0.00006786 Y} -00000157064 - 2.5023
(Ic): | Xo) 1 0 =0or || X;) 1 0 |=0, (27¢)
|X3) —408575 1 |X,) —0.0000208433 1
Y)"™ 0270385 0435669 0.232325
Xo) 1 0 0
ta): || X0 =0,
W) 1e7808 1 0 (282)
X,) 143612 222431 1
|X2)
V)" 0270385 0435669 -0.0000608117
Xo) 1 0 0
) || X0 =0,
(tlb) |X;) 1.87808 1 0 (28b)
|X;) —408575 -33835 1
V)" 0270385 0216598 -0.0000324573
Xo) 1 0 0
). [ %o =0,
(le) X,) 143612 1 0 (28¢)
|X3) —408575 -253637 1
V)" 0270385 0435669 0.232325 -0.0000363728
| X 1 0 0 0
() ||x,) 187808 1 0 =0. (29)

Xy) 0
X,) 143612 222431 1 0
X;) —408575 -33835 -330657 1
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Table5. Spectral structure activity relationships (S-SARpPtgh determinants of Equations (27)-(29)
for all possible correlation models considered fibi data in Table 3.

Models Vectors S-SAR Equation
Ia [ Xo).| Xa) |Y)"® = 0547836 X ;) +0.435669 X, )
° [Xo). | X2) 1Y) = —2.84024 X 4) +0.216598 X , )
¢ [ Xo) | Xa) |Y)" = ~2.50233 X, )~0.000067865X 5 )
lla | Xo) | X1) [ X2) V)" = -2.91377 X, ) -0.0810929X, ) +0.232328 X , )
b | Xo) | X1) [ X3) Y)"® = —2.64602 X ;) +0.229913 X, ) ~0.000060811[X ;)
e [ Xo0):|X2) | X3) V)" = _2.98401 X, ) +0.134274 X, ) -

0.000032457BX 5 )
X)X [Xo) [ Xa) | ¥)" = —2.9439% X ) +0.0633549 X, ) ~0.112086 X, )

~0.000036372BX 5 )

Remarkably, one may easily note the striking stode of the equations in Tables 4 and 5,
respectively. Moreover, in equations (27) the gpédeterminant was written in both possible walys o
orthogonalization, nevertheless leading to the saeselts in Table 5. That is the computational proo
that Spectral-SAR indeed provides a viable alteéraab standard QSAR at each level of modelling,
being independent of number of descriptors, com@suar order of orthogonalization. We advocate
on the computational advantage of S-SAR thoughetesseps of computation and by the full
analyticity of the delivered structure-activity edun, through a simple transparent determinant.

However, conceptually, S-SAR achieves a degreeoweélty with respect to normal QSAR though
that the spectral equation is given in terms oftmacrather than variables. Such features marks a
fundamental achievements since this way we can aeahce with whole available data (of activity
and descriptors) within a generalized vectoriacsp&onsequently, we may also use the spectral norm
of the activity,

MEASURED N MEASURED
|Y>PREDICTED — Z(in)PREDICTED’ (30)

i=1

as the general tool by means which various modgise compared no matter of which dimensionality
and of which multi-linear degree since they alluegl to a single number. This could help fulfill
QSAR's old dream of providing a conceptual basrstii®@ comparison of various models and end
points by becoming a true science. Even more, wdige accurately reproducing the statistics of the
standard QSAR, the actual S-SAR permits the intbda of an alternative way of computing
correlation factors by using the above spectraimooncept. As such the so called algebraic S-SAR
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correlation factor is defined as the ratio of thearal norm of the predicted activity versus thiathe

measured one;:
PREDICTE
V)™
ALGEBRAIC _

S-SAR - H|Y>MEASUREE” : (31)

Applying Eq. (31) to the present case of the measgpectral norm of. pyriformis activity
H|Y>MEASUREET

given in Table 6 along the individual spectral nasfractivity and the standard statistical correlati
factor values.

=6.83243the algebraic S-SAR correlation factors for theuakcpredicted models are

Table 6. The predicted spectral norm, the statistic andathebraic correlation factors of the S-SAR
models of Table 5, computed upon the general B3, (21), and (31) since the entry data of Table 3
are employed, respectively.

la Ib Ilc lla b lic I

H|Y>PRED'CTED‘ 3.86176 622803 6.0607 6.24858 6.32297 6.43641 5674

roeng ' 053905 0.90759 0.88193 0.91074 0.92214  0.9395 00.94

rQLSEBRAIC 056521  0.91154  0.88705 0.91455 0.92543  0.94204 4368

The findings in Table 6 are twice relevant: filsécause it is clear that the spectral norm pasallel
the statistic correlation factor; second, becaas&e the introduced algebraic correlation factoesd
the same job, it poses slightly higher values sgstematic basis.

In other words, one can say that in an algebraises¢he S-SAR furnishes systematically higher
correlation factors than the standard QSAR doets fEature is also depicted in Figure 4 from where
is also noted that both correlation factors tendgproach each other near the ideal correlaticirfac
I.e. in the proximity ofr = 100

Nevertheless, we should note at this point thatendnicertain model does not satisfy the correlation
factor criteria for being validated, i.e.> 084as is the case of the moddk)( when only
hydrophobicity is taken into account, this doesmegan that the descriptor or chemical domain is les
relevant; it is merely an indication that this dgsor may be further considered in a multivariate
combination with others until produce better model.

Indeed, both within standard QSAR and S-SAR appresall models excepta) are characterized
by relevant statistics.
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Figure 4. Norm correlation spectral space of the statistacal algebraic correlation factors against the

spectral norm of the predicted S-SAR models of @&hlrespectively.

Table 7. Synopsis of the statistic and algebraic valuesattigpconnecting the S-SAR models of Table

5 in the norm-correlation spectral-space of Figure

Value
Path

Statistic Algebraic
la-lla-lll 2.61485 2.61132
la-11b-111 2.61485 2.61132
la-llc-lI 2.61485 2.61132
Ib-lla-lll 0.220072 0.219855
Ib-11b-1Il 0.220072 0.219855
Ib-llc-lI 0.220072 0.219855
Ic-lla-lll 0.389359 0.388969
lc-1Ib-111 0.389359 0.388969

lc-llc-ll 0.389359 0.388969
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Figure5. Spectral-structural models, designed throughulesrof minimal spectral-SAR paths of
Table 7, emphasizing the primary, secondary aniitghierarchies forward the endpoints of the
Tetrahymena pyriformisco-toxicological activity according with dataTdble 3, S-SAR equations of
Table 5, and of the associated spectral norms ctedupon Eg. (30).

Next, aiming to see whether the obtained modelspcanide us a mechanistic model of chemical-
biological interaction of tested xenobiotics ®npyriformisspecies, the introduced spectral norm is
employed in conjunction with algebraic or statistmrrelation factors to compute tkpectral paths
between these models. Such an endeavor may leaditdra-species analysis of models and form the
first step for designing of integrated test ba#ter{or an expert system) at the inter-species lewel
ecotoxicology.

In this respect, Table 7 presents the computedtrghedistance between the models of the
measured Log(1/IG4) endpoint of Table 3 though considering all padmbinations that contain a
single model for each class, with one and two dgtsos, towards the closest model, i.Bl)( with
respect to the ideal one. It follows that the pathes grouped according to the intermediary passing
model while extreme models (initial and final) &ept fixed. Such ordered paths can be rationalized
since a selection criterion is further introduc8ahce paths are involved, one may learn from thie we
established principle of nature according to whiah events are linked by closest paths (in allsotas
and quantum spaces).

Therefore, we may formulate ti82SAR least path principkes follows: the hierarchy of models is
driven by the minimum distance between endpointedjpted norm of activities) of different classes
of descriptors and of their combinations; whenewattiple minimum paths are possible, that principle
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applies iteratively downwards between individuaeimediate models of paths, starting with that one
with minimal spectral norm.

In our case, according to the enounced minimumtegdepath rule, the diagram of Figure 5 is
constructed. It emphasizes different mechanisgcanchies of th@. pyriformistoxicophores. It comes
out that, for instance, while three minimum patbsuit from Table 7, namelp-lla-111, 1b-11b-IIl , and
Ib-llc-11l, only one is selected as giving the primary hargylb-lla-1ll, based on the fact that the
spectral norm ofla is the closest one tib. This is a purely mechanistic result since theatation
order in Table 6 would require thidt be the next model chosen when starting from mtidet this
point, we see that what is ordered from a stasisfpwint of view may be degenerate in path length
between the spectral norms. Therefore it appeatssthtistics might not be the most adequate witer
for SAR validity, since models with different coiagons factors may be equally inter-related thioug
spectral norms. Used exclusively, the statistiteda will give little information about the subgady
inter-species correlations in a unitary picture.t@acontrary, the spectral path rule is able tomfdate
a scheme of connected paths between the model®gngplthe natural principle of minimal action.
Minimal action here means that minimal length bemepectral norms of different categories of
endpoints is more favorable and comes firstly iatprocess driven by the succession of activities
Thus, once the patlb-lla-lll is naturally selected as the primary hierarchytlod ecotoxicity
mechanism of. pyriformis one can expect that, in this interpretation @f tmnimum spectral paths,
the envisioned sequence of actions towards theure®ne can be causally modeled as the action of
polarizability followed by that of hydrophobicitynd finally by that of total energy, through the
optimization of molecular geometry during the cheaitbiological interactions involved. This picture
tells that the covalent interaction is the most gh@mt one, in this case, and drives the approach
between the xenobiotics and the cells of organtbemn enters into action the transfer through catlul
membrane and finally the stabilization being assimgthe stereo-specificity of the compounds linked
to the receptor site. This way, a molecular medmanmnay be coherently formulated in terms of norms
of actions and of their inter-distances.

Whenever the primary route is inhibited, the sechrmatarchy of action follows by excluding the
models previously involved and based on the sais lerinciple of action. The second initial model
will be chose that which is nearest to the first @om the spectral norm scale. Then, from all edeinta
paths the next step is made toward the closes Im@igh the spectral norm sense.

The second hierarchy results along the endpoirttslpdlb-1ll, see Figure 5. This tells us that, by
some subsidiary, slower action, the stereo-spdgifelection is the first stage of the chemical-
biological interaction analyzed, followed by memimaransport and only then by the stabilization of
chemical bonds through polarizability.

If the secondary route is somehow repressed, dstheethird way of ecotoxicological action @f
pyriformis is also revealed as in Figure I3;llc-1ll, again on the minimal activity action grounds
constructed.

It is not surprising that the application of minin@&tion principles on the spectral activity norms
furnished many, however ordered, ways in which dhahbiological interaction are present in nature.
This is in accordance with the heuristically trtiiat the Nature reserves the privilege to develapym
paths to achieve an action. The present S-SAR apbrgives these new possibilities of hierarchically
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modelling of activities, in a way that the statiati analysis appears to be limited to single cl®ice
Nevertheless, further work has to be performed impleying S-SAR method and of its minimal
spectral path principle on many species and classrmpounds in order to better validate the present
results and algorithm.

4. Conclusions

Aiming to solve part of the many challenges posg@ISAR and its applications, with a view to
generating a mechanistic-causal vision of the datarded (measured or computed), the current paper
introduces both a new analytical SAR modelling gt (the so-called Spectral-SAR method) and
its associated minimum spectral action principtdipfving the activity norm of the models generated.
As such, four possible branches of a QSAR expewise identified, namely those based on the so
called classical (of Hansch type), 3-dimensiondl QQMFA or MTD type), decisional (of genetic
algorithm type) and orthogonal (of PCA type) — ptbposing to furnish an appropriate analytical
model for structure-chemical property or biologicattivity correlations. In this context the
orthogonality problem was especially addressedjghdhe considered descriptors have to be as little
collinear as possible in order to eliminate redumiizs. Despite the fact that many QSAR approaches
make use of algorithms that separate or transfaitialinon-orthogonal data into an orthogonal space
in search of a better correlation, many of themvigi® no significant improvement over the standard
QSAR least square recipe. Instead, the presentaeod@uts forth the orthogonal space (in Gram-
Schmidt sense) only as an intermediate one in cieavbtain from it the spectral expansion of
concerned activity and descriptors like vectors ihigh dimensional space. This way, through more
algebraic transparent transformations the spec$talcture-activity relationships (S-SAR) are
formulated as viable alternative to the previowndard QSAR method. The actual S-SAR approach
also provides the framework in which the spectratrm can be formulated as assigning a single
number to any SAR problem with the meaning of erdoaf all information of a model, including the
statistics. However, the spectral norm permitssipectral formulation of the minimal action prin@pl
applicable among various tested models. As suaehgetiotoxicology of th&etrahymena pyriformis
was studied in detail providing the hierarchicathgaof molecular actions towards the recorded
activity. Since all consecrated criteria of a véilR analysis to an ecotoxicology study were inetlid
the present added principle, in terms of minimurthpaver spectral norms of possible models for a
certain set of data, unfolds the perspective aka mechanistic interpretation of the chemical-
biological interaction based on QSAR equation. Minadess, further inter-species studies as well as
the time-version of the least spectral norm prilechpave to be undertaken in order to better retreal
features and advantages of the present S-SAR method
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